• Title/Summary/Keyword: Genetic Evaluation

Search Result 902, Processing Time 0.037 seconds

Evaluation of the Degrees of Genetic Connectedness Among Duroc Breed Herds (국내 두록종 농장간 유전적 연결성 추정)

  • Cho, Chungil;Choi, Jaekwan;Park, Byoungho;Kim, Sidong;Kwon, Ohsub;Choi, Youlim;Choy, Yunho
    • Journal of Animal Science and Technology
    • /
    • v.54 no.5
    • /
    • pp.337-340
    • /
    • 2012
  • The genetic connectedness between herds is an essential requirement to make robust across-herd estimation of the breeding values of the animals. In this study, genetic connectedness between herds was evaluated by a connectedness rating method. A total of 24,971 records of days to 90 kg (D90KG) of the pigs on performance testing programs collected from six herds (labeled from 'A' to 'F') of Duroc breed along with pedigree information comprising 456,697 families were used. Results showed that a total of eight boars were used for semen exchange programs among participant farms. Herds 'A' through 'E' were found strongly connected among them. But 'F' herd was genetically connected strongly only with 'A' herd. The highest average connectedness rating was 91.7% between 'A' herd and 'C' herd. The lowest average connectedness rating was 65.1% between 'D' and 'F'. The concept of a single genetic group comprising six Duroc herds studied is meaningful due to high connectedness rates among them. Therefore, with this high genetic ties between participant Duroc farms, the more accurate genetic evaluation would be possible.

Genetic Parameters of Milk Yield and Milk Fat Percentage Test Day Records of Iranian Holstein Cows

  • Shadparvar, A.A.;Yazdanshenas, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1231-1236
    • /
    • 2005
  • Genetic parameters for first lactation milk production based on test day (TD) records of 56319 Iranian Holstein cows from 655 herds that first calved between 1991 and 2001 were estimated with restricted maximum likelihood method under an Animal model. Traits analyzed were milk yield and milk fat percentage. Heritability for TD records were highest in second half of the lactation, ranging from 0.11 to 0.19 for milk yield and 0.038 to 0.094 for milk fat percentage respectively. Estimates for lactation records for these traits were 0.24 and 0.26 respectively. Genetic correlations between individual TD records were high for consecutive TD records (>0.9) and decreased as the interval between tests increased. Estimates of genetic correlations of TD yield with corresponding lactation yield were highest (0.78 to 0.86) for mid-lactation (TD3 to TD8). Phenotypic correlations were lower than corresponding genetic correlations, but both followed the same pattern. For milk fat percentage no clear pattern was found. Results of this study suggested that TD yields especially in mid-lactation may be used for genetic evaluation instead of 305-day yield.

Dairy Cows of High Genetic Merit for Yields of Milk, Fat and Protein - Review -

  • Norman, H.D.;Powell, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1316-1323
    • /
    • 1999
  • Extensive emphasis on milk and milk fat yields with no diversion for beef performance increased the yield efficiency of North American dairy cattle. Heavy demand for North American genetics followed national strain comparison trials in Poland, and US and Canadian dairy cattle and germplasm still are an important source of genetics for many countries. Genetic improvement has accelerated in many countries because of the implementation of sampling programs for young bulls and improved evaluation procedures. Rapid access to information and more frequent calculation of genetic information also are having a positive impact on genetic improvement. Traits other than yield should be considered in a breeding program, but those traits mist have a reasonable opportunity for improvement and sufficient economic worth. Because of ever increasing efficiency, the world's milk supply comes from fewer cows each year. However, no decline in the rate of genetic improvement is apparent under current genetic practices; estimates of heritability are increasing, and a decline in yield efficiency is unlikely in the near future. As management improves, especially for subtropical conditions, many of the selection principles used in temperate climates will be adopted for more adverse environmental conditions.

Comparative Studies of Adriamycin and 28-Deacetyl Sendanin on In Vitro Growth Inhibition of Human Cancer Cell Lines

  • Kim, Hwan-Mook;Oh, Goo-Taeg;Han, Sang-Bae;Hong, Dong-Ho;Hwang, Bang-Yeon;Kim, Young-Ho;Lee, Jung-Joon
    • Archives of Pharmacal Research
    • /
    • v.17 no.2
    • /
    • pp.100-103
    • /
    • 1994
  • The limonoid compound (28-deacetyl sendanin0 isolated from the fruit of Melia toosendan SIEB. et ZUCC. was evaluated on anticancer activity. According to a standard in vitro cytotoxicity assy, eight human cancer cell lines and SRB assay were introduced for present evaluation. As a positive standard, adriamycin was tested in parallel. The cell lines were originated from six different organs. In view of dose-response profiles to 28-deacetyl sendanin, the most sensitive cells were SF-539 and PC-3 which were derived from CNS and prostate, respecitively. In contrast, all the cell lines responded similarly to adriamycin to give rise to nearly indentical six cell lines were more sensitive to 28-deacetyl sendanin and two were more resistant. As a result, 28-deacetyl sendanin had more senstive and selective inhibitory effects on in vitro growth of human cancer cell lines in a comparison with adriamycin.

  • PDF

Genotype by environment interaction for somatic cell score in Holstein cattle of southern Brazil via reaction norms

  • Mulim, Henrique Alberto;Pinto, Luis Fernando Batista;Valloto, Altair Antonio;Pedrosa, Victor Breno
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.499-505
    • /
    • 2021
  • Objective: The objective of this study was to evaluate the genetic behavior of a population of Holstein cattle in response to the variation of environmental temperature by analyzing the effects of genotype by environment interaction (GEI) through reaction norms for the somatic cell score (SCS). Methods: Data was collected for 67,206 primiparous cows from the database of the Paraná Holstein Breeders Association in Brazil, with the aim of evaluating the temperature effect, considered as an environmental variable, distinguished under six gradients, with the variation range found being 17℃ to 19.5℃, over the region. A reaction norm model was adopted utilizing the fourth order under the Legendre polynomials, using the mixed models of analysis by the restricted maximum likelihood method by the WOMBAT software. Additionally, the genetic behavior of the 15 most representative bulls was assessed, in response to the changes in the temperature gradient. Results: A mean score of 2.66 and a heritability variation from 0.17 to 0.23 was found in the regional temperature increase. The correlation between the environmental gradients proved to be higher than 0.80. Distinctive genetic behaviors were observed according to the increase in regional temperature, with an observed increase of up to 0.258 in the breeding values of some animals, as well as a reduction in the breeding of up to 0.793, with occasional reclassifications being observed as the temperature increased. Conclusion: Non-relevant GEI for SCS were observed in Holstein cattle herds of southern Brazil. Thus, the inclusion of the temperature effect in the model of genetic evaluation of SCS for the southern Brazilian Holstein breed is not required.

A Genetic Algorithm Approach to the Fire Sequencing Problem

  • Kwon, O-Jeong
    • Journal of the military operations research society of Korea
    • /
    • v.29 no.2
    • /
    • pp.61-80
    • /
    • 2003
  • A fire sequencing problem is considered. Fire sequencing problem is a kind of scheduling problem that seeks to minimize the overall time span under a result of weapon­target allocation problem. The assigned weapons should impact a target simultaneously and a weapon cannot transfer the firing against another target before all planned rounds are consumed. The computational complexity of the fire sequencing problem is strongly NP­complete even if the number of weapons is two, so it is difficult to get the optimal solution in a reasonable time by the mathematical programming approach. Therefore, a genetic algorithm is adopted as a solution method, in which the representation of the solution, crossover and mutation strategies are applied on a specific condition. Computational results using randomly generated data are presented. We compared the solutions given by CPLEX and the genetic algorithm. Above $7(weapon){\times}15(target)$ size problems, CPLEX could not solve the problem even if we take enough time to solve the problem since the required memory size increases dramatically as the number of nodes expands. On the other hand, genetic algorithm approach solves all experimental problems very quickly and gives good solution quality.

Fuzzy Rule Optimization Using a Multi-population Genetic Algorithm (다중 개체군 유전자 알고리즘을 이용한 퍼지 규칙 최적화)

  • Lou, See-Yul;Chang, Won-Bin;Kwon, Key-Ho
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.8
    • /
    • pp.54-61
    • /
    • 1999
  • In this paper, we apply one of modified Genetic Algorithms, a Multi-population Genetic Algorithm(MGA) that improves the genetic diversity to determine the fuzzy rule base and the shape of membership functions. The generation of the fuzzy rule base for fuzzy control, generally, depends on expert's experience. We suggest a new evaluation function to optimize fuzzy rule base. Simulation shows that the proposed method has good result.

  • PDF

Genetic Scheduling Algorithm for FFT Dta Flows in Parallel Computers (병렬 컴퓨터 시스템에서의 FFT 데이터 흐름도에 관한 유전 스케줄링 알고리즘)

  • 박월선;김금호;서루비;윤성대
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.161-164
    • /
    • 2000
  • We propose the genetic algorithm to apply three kinds of FFT data flows to be considered the overhead for the data exchange between processors that have the multi-scheduling problem on parallel computer In the design of genetic algorithm, we propose the chromosome representation which can simply encode and decode a solution without any heuristic information, the evaluation function to be considered an efficiency of processor, and the genetic operator to inherit a superior gene from their parents. And we saw that the simulation result can verify better performance than the existing algorithm(BEA : binary exchange algorithm)in the face of execution time.

  • PDF

Global Optimization Using a Sequential Algorithm with Orthogonal Arrays in Discrete Space (이산공간에서 순차적 알고리듬(SOA)을 이용한 전역최적화)

  • Cho, Bum-Sang;Lee, Jeong-Wook;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.858-863
    • /
    • 2004
  • In the optimized design of an actual structure, the design variable should be selected among any certain values or corresponds to a discrete design variable that needs to handle the size of a pre-formatted part. Various algorithms have been developed for discrete design. As recently reported, the sequential algorithm with orthogonal arrays(SOA), which is a local minimum search algorithm in discrete space, has excellent local minimum search ability. It reduces the number of function evaluation using orthogonal arrays. However it only finds a local minimum and the final solution depends on the initial value. In this research, the genetic algorithm, which defines an initial population with the potential solution in a global space, is adopted in SOA. The new algorithm, sequential algorithm with orthogonal arrays and genetic algorithm(SOAGA), can find a global solution with the properties of genetic algorithm and the solution is found rapidly with the characteristics of SOA.

  • PDF