• 제목/요약/키워드: Genetic Approach

검색결과 1,323건 처리시간 0.042초

Concept Optimization for Mechanical Product Using Genetic Algorithm

  • Huang Hong Zhong;Bo Rui Feng;Fan Xiang Feng
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1072-1079
    • /
    • 2005
  • Conceptual design is the first step in the overall process of product design. Its intrinsic uncertainty, imprecision, and lack of information lead to the fact that current conceptual design activities in engineering have not been computerized and very few CAD systems are available to support conceptual design. In most of the current intelligent design systems, approach of principle synthesis, such as morphology matrix, bond graphic, or design catalogues, is usually adopted to deal with the concept generation, in which optional concepts are generally combined and enumerated through function analysis. However, as a large number of concepts are generated, it is difficult to evaluate and optimize these design candidates using regular algorithm. It is necessary to develop a new approach or a tool to solve the concept generation. Generally speaking, concept generation is a problem of concept synthesis. In substance, this process of developing design candidate is a combinatorial optimization process, viz., the process of concept generation can be regarded as a solution for a state-place composed of multi-concepts. In this paper, genetic algorithm is utilized as a feasible tool to solve the problem of combinatorial optimization in concept generation, in which the encoding method of morphology matrix based on function analysis is applied, and a sequence of optimal concepts are generated through the search and iterative process which is controlled by genetic operators, including selection, crossover, mutation, and reproduction in GA. Several crucial problems on GA are discussed in this paper, such as the calculation of fitness value and the criteria for heredity termination, which have a heavy effect on selection of better concepts. The feasibility and intellectualization of the proposed approach are demonstrated with an engineering case. In this work concept generation is implemented using GA, which can facilitate not only generating several better concepts, but also selecting the best concept. Thus optimal concepts can be conveniently developed and design efficiency can be greatly improved.

모바일폰을 위한 지속가능한 폐쇄루프 공급망 모델: 혼합유전알고리즘 접근법 (Sustainable Closed-loop Supply Chain Model for Mobile Phone: Hybrid Genetic Algorithm Approach)

  • 윤영수
    • 한국산업정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.115-127
    • /
    • 2020
  • 본 연구에서는 모바일폰의 생산, 유통 및 사용 후 처리과정을 효율적으로 관리하기 위한 지속가능한 폐쇄루프 공급망 (Sustainable close-loop supply chain: SCLSC) 모델을 제안한다. 제안된 SCLSC모델의 지속가능성 (Sustainability)을 강화하기 위해 경제적 요인인 총이익 최대화, 환경적 요인인 총 CO2 방출량 최소화, 사회적 요인인 사회적 영향력 최대화를 각각 고려하였다. 이들 세 가지의 요인은 제안된 SCLSC모델의 수리화 모델링 과정에서 목적함수로 표현된다. 따라서 제안된 SCLSC모델은 다목적 최적화 (Multi-objective optimization) 문제로 고려될 수 있으며, 이를 해결하기 위해 혼합유전알고리즘 (Hybrid genetic algorithm: HGA) 접근법을 사용하였다. 수치실험에서는 세가지 상이한 규모의 SCLSC모델을 제시하고, 이를 다양한 수행도 척도들을 사용하여 HGA 접근법의 우수성을 확인하였다.

조립산업에서 공급 붕괴를 고려한 공급망 네트워크모델: 혼합유전알고리즘 접근법 (Supply Chain Network Model Considering Supply Disruption in Assembly Industry: Hybrid Genetic Algorithm Approach)

  • 추룬수크 아누다리;윤영수
    • 한국산업정보학회논문지
    • /
    • 제26권3호
    • /
    • pp.9-22
    • /
    • 2021
  • 본 연구에서는 조립산업의 공급망(Supply chain)에서의 발생할 수 있는 공급붕괴(Supply disruption)를 고려한 공급망 네트워크(Supply chain network: SCN) 모델이 제안된다. 공급붕괴를 위해 공급자 붕괴(Supplier disruption)와 경로 붕괴(Route disruption)가 함께 SCN 모델에서 고려되며, 이러한 두 가지의 붕괴 현상을 함께 고려한 SCN 모델은 유연성(Flexibility)과 효율성(Efficiency)을 성취할 수 있게 된다. SCN 모델은 수리모형으로 표현되며, 혼합유전알고리즘(Proposed hybrid genetic algorithm: pro-HGA) 접근법을 이용해 이행된다. 수치실험에서는 몇몇 상이한 규모를 가진 SCN 모델을 이용해 제안된 pro-HGA 접근법의 수행도와 기존 접근법의 수행도를 비교분석하였으며, 공급자 수와 백업경로(Backup route) 수의 변화를 통한 민감도 분석을 실시하였다. 실험 결과, 제안된 pro-HGA 접근법의 효율성을 입증하였고, SCN 모델의 유연성과 효용성을 검증하였다. 마지막으로 본 연구 수행의 의의 및 향후 개선방향에 대해 논하였다.

A modified Genetic Algorithm using SVM for PID Gain Optimization

  • Cho, Byung-Sun;Han, So-Hee;Son, Sung-Han;Kim, Jin-Su;Park, Kang-Bak;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.686-689
    • /
    • 2004
  • Genetic algorithm is well known for stochastic searching method in imitating natural phenomena. In recent times, studies have been conducted in improving conventional evolutionary computation speed and promoting precision. This paper presents an approach to optimize PID controller gains with the application of modified Genetic Algorithm using Support Vector Machine (SVMGA). That is, we aim to explore optimum parameters of PID controller using SVMGA. Simulation results are given to compare to those of tuning methods, based on Simple Genetic Algorithm and Ziegler-Nicholas tuning method.

  • PDF

Minimum Spanning Tree 응용문제에 대한 유전연산의 개선 (Improvement of Genetic Operations for Minimum Spanning Tree Application Problems)

  • 고시근;김병남
    • 산업공학
    • /
    • 제15권3호
    • /
    • pp.241-246
    • /
    • 2002
  • Some extensions of minimum spanning tree problem are NP-hard problem in which polynomial-time solutions for them do not exist. Because of their complexity, recently some researcher have used the genetic algorithms to solve them. In genetic algorithm approach the Prufer number is usually used to represent a tree. In this paper we discuss the problem of the Prufer number encoding method and propose an improved genetic operation. Using a numerical comparison we demonstrate the excellence of the proposed method.

바이러스-메시 유전 알고리즘에 의한 퍼지 모델링 (The Fuzzy Modeling by Virus-messy Genetic Algorithm)

  • 최종일;이연우;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.157-160
    • /
    • 2000
  • This paper deals with the fuzzy modeling for the complex and uncertain system in which conventional and mathematical models may fail to give satisfactory results. mGA(messy Genetic Algorithm) has more effective and adaptive structure than sGA with respect to using changeable-length string and VEGA(Virus Evolution Genetic) Algorithm) can search the global and local optimal solution simultaneously with reverse transcription operator and transduction operator. Therefore in this paper, the optimal fuzzy model is obtained using Virus-messy Genetic Algorithm(Virus-mGA). In this method local information is exchanged in population so that population may sustain genetic divergence. To prove the surperioty of the proposed approach, we provide the numerical example.

  • PDF

유전 알고리즘을 이용한 IWR 이족 보행 로보트의 균형추 제어 (Control of balancing weight for IWR biped robot by genetic algorithm)

  • 심경흠;이보희;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1185-1188
    • /
    • 1996
  • In this paper we present a genetic approach for trajectory control algorithm of balancing weight for IWR biped walking robot. The biped walking robot, IWR that was made by Automatic Control Lab. of Inha University has a trunk which stabilizes its walking by generating compensation moment. Trunk is composed of a revolute and a prismatic joint which roles balancing weight. The motion of balancing weight is determined by the gait of legs and represented by two linear second order ordinary differential equations. The solution of this equation must satisfy some constraints simultaneously to have a physical meaning. Genetic algorithm search for this feasible motion of balancing weight under some constraints. Simulation results show that feasible motion of balancing weight can be obtained by genetic algorithm.

  • PDF

유전 프로그래밍을 위한 트리 구조 기반의 진화연산자 (Genetic Operators Based on Tree Structure in Genetic Programming)

  • 서기성;방철혁
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1110-1116
    • /
    • 2008
  • In this paper, we suggest GP operators based on tree structure considering tree distributions in structure space and structural difficulties. The main idea of the proposed genetic operators is to place generated offspring into the specific region which nodes and depths are balanced and most of solutions exist. To enable that, the proposed operators are designed to utilize region information where parents belong and node/depth rates of selected subtree. To demonstrate the effectiveness of our proposed approach, experiments of binomial-3 regression, multiplexer and even parity problem are executed. The experiments results show that the proposed operators based on tree structure is superior to the results of standard GP for all three test problems in both success rate and number of evaluations.

Obesity: Interactions of Genome and Nutrients Intake

  • Doo, Miae;Kim, Yangha
    • Preventive Nutrition and Food Science
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2015
  • Obesity has become one of the major public health problems all over the world. Recent novel eras of research are opening for the effective management of obesity though gene and nutrient intake interactions because the causes of obesity are complex and multifactorial. Through GWASs (genome-wide association studies) and genetic variations (SNPs, single nucleotide polymorphisms), as the genetic factors are likely to determine individuals' obesity predisposition. The understanding of genetic approaches in nutritional sciences is referred as "nutrigenomics". Nutrigenomics explores the interaction between genetic factors and dietary nutrient intake on various disease phenotypes such as obesity. Therefore, this novel approach might suggest a solution for the effective prevention and treatment of obesity through individual genetic profiles and help improve health conditions.

유전 알고리즘을 이용한 강성회전체의 평형잡이 (Balancing of a Rigid Rotor using Genetic Algorithms)

  • 양보석;주호진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권2호
    • /
    • pp.108-108
    • /
    • 1996
  • This paper describes a new approach to solve balancing of a rigid rotor. In this paper, the balancing of the rigid rotor using genetic algorithms, which are search algorithms based on the mechanics of natural selection and natural genetics is proposed. Under the assumption that the initial vibration values used to calculate correction masses contain errors, the influence coefficient method, the least squares method and a genetic algorithm are compared. The results show that the vibration amplitude obtained with the least squares method and the genetic algorithm is smaller than that obtained with the influence coefficient method.