Khanteymoori, Ali Reza;Menhaj, Mohammad Bagher;Homayounpour, Mohammad Mehdi
ETRI Journal
/
제33권1호
/
pp.39-49
/
2011
A new structure learning approach for Bayesian networks based on asexual reproduction optimization (ARO) is proposed in this paper. ARO can be considered an evolutionary-based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter, the parent and its bud compete to survive according to a performance index obtained from the underlying objective function of the optimization problem: This leads to the fitter individual. The convergence measure of ARO is analyzed. The proposed method is applied to real-world and benchmark applications, while its effectiveness is demonstrated through computer simulations. Results of simulations show that ARO outperforms genetic algorithm (GA) because ARO results in a good structure and fast convergence rate in comparison with GA.
Pantos, George D.;Karamalis, Panagiotis D.;Constantinou, Philip
Journal of Communications and Networks
/
제10권3호
/
pp.233-238
/
2008
In this paper, the application of genetic algorithms (GAs) for orthogonal frequency division multiplexing (OFDM) signal peak-to-average power ratio (PAPR) reduction is investigated. A GA is applied in order to enhance the performance of some known techniques for OFDM PAPR reduction and the potential benefits are analyzed. Using the proposed techniques, the system designer can take advantage of the GA versatility, robustness, and adaptability to specific system requirements, in order to achieve a convenient trade-off between effectiveness and computational burden.
This paper presents an application of the Genetic Algorithms(GA) to solve the optimal routing problem(ORP) in power distribution system planning. Since the ORP is, in general, modeled as a mixed integer problem with some various mathematical constraints, it is hard to solve. In this paper, a new approach was made using the GA method for the ORP to overcome the disadvantages which many conventional methods generally have. For this approach, proposed was in this study a appropriately designed fitness function suited for the ORP. The proposed algorithm has been tested in sample network and the results are presented.
그래프 분할 문제는 각각의 가중치가 주어진 에지와 노드를 정해진 목적에 맞게 몇 개의 그룹으로 분할하는 문제이다. 이 문제는 휴리스틱 방법으로 해결되어져 왔으나, NP-hard 문제로 인한 지역 최적해에 빠지기 쉬운 단점을 갖는다. 유전자 알고리즘이 해결 방법으로 제시되고 있는 가운데 단순 유전자 알고리즘에서 초기의 모집단 메모리(population memory)를 이용하여 적은 크기의 모집단을 생성하고 외부메모리에 최적해들을 저장하고 있어 GA의 효율성을 높이며, 다수의 지역 최적해에 빠지지 않게 하며 수렴 속도를 향상시키는 마이크로 유전자 알고리즘을 적용한다. ${\mu}$-GA를 통해 본 논문에서는 클러스터들의 가중치를 비교적 동일하게 하는 GPP를 해결하고자 한다.
This paper presents an unified method which solves real and reactive power dispatch problems for the economic operation of power systems using evolutionary computation such as genetic algorithms(GA), evolutionary programming(EP), and evolution strategy(ES). Many conventional methods to this problem have been proposed in the past, but most of these approaches have the common defect of being caught to a local minimum solution. The proposed methods, applied to the IEEE 30-bus system, were run for 10 other exogenous parameters and composed of P-optimization module and Q-optimization module. Each simulation result, by which evolutionary computations are compared and analyzed, shows the possibility of applications of evolutionary computation to large scale power systems.
This study aims to develop a cost-based high-performance concrete (HPC) mix optimization system based on an integrated approach using artificial neural networks (ANNs) and genetic algorithms (GA). ANNs are used to predict the three main properties of HPC, namely workability, strength and durability, which are used to evaluate fitness and constraint violations in the GA process. Multilayer back-propagation neural networks are trained using the results obtained from experiments and previous research. The correlation between concrete components and its properties is established. GA is employed to arrive at an optimal mix proportion of HPC by minimizing its total cost. A system prototype, called High Performance Concrete Mix-Design System using Genetic Algorithm and Neural Networks (HPCGANN), was developed in MATLAB. The architecture of the proposed system consists of three main parts: 1) User interface; 2) ANNs prediction models software; and 3) GA engine software. The validation of the proposed system is carried out by comparing the results obtained from the system with the trial batches. The results indicate that the proposed system can be used to enable the design of HPC mix which corresponds to its required performance. Furthermore, the proposed system takes into account the influence of the fluctuating unit price of materials in order to achieve the lowest cost of concrete, which cannot be easily obtained by traditional methods or trial-and-error techniques.
Genetic Algorithms face an inherent conflict between exploitation and exploration. Exploitation refers to taking advantage of information already obtained in the search. Exploration show that a pattern in bits coupled with another pattern elsewhere in the string is more effective. In this paper shows that the selection method has a major impact on the balance between exploitation and exploration. A more heavy-handed approach seeks to exploit the available information. If decisions must be made quickly, especially those in real-time trading environments, then quicker convergence through exploitation may be more desirable. Also this paper we present some theoretical and empirical the selection method in genetic algorithms for a GA-hard problem.
This paper deals with the problem of placement/sizing of distributed piezo actuators to achieve the control objective of vibration suppression. Using the mean square response as a performance index in optimization, we obtain optimal placement and sizing of the actuator. The use of genetic algorithms as a technique for solving optimization problems of placement and sizing is explored. Genetic algorithms are also used for the control strategy. The analysis of the system and response moment equations are carried out by using the Fokker-Planck equation. This paper presents the design and analysis of an active controller and optimal placement/sizing of distributed piezo actuators based on genetic algorithms for a flexible structure under random disturbance, shows numerical example and the result.
Hassan, M.R.A.;Azid, I.A.;Ramasamy, M.;Kadesan, J.;Seetharamu, K.N.;Kwan, A.S.K.;Arunasalam, P.
Structural Engineering and Mechanics
/
제35권1호
/
pp.83-98
/
2010
In this paper, the mass optimization of four bar linkages is carried out using genetic algorithms (GA) with single and dual constraints. The single constraint of bending stress and the dual constraints of bending and buckling stresses are imposed. From the movement response of the bar linkage mechanism, the analysis of the mechanism is developed using the combination of kinematics, kinetics, and finite element analysis (FEA). A penalty-based transformation technique is used to convert the constrained problem into an unconstrained one. Lastly, a detailed comparison on the effect of single constraint and of dual constraints is presented.
In this paper, we introduce the advanced Self-Organizing Fuzzy Polynomial Neural Network based on optimized FPN by evolutionary algorithm and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed model gives rise to a structurally and parametrically optimized network through an optimal parameters design available within Fuzzy Polynomial Neuron(FPN) by means of GA. Through the consecutive process of such structural and parametric optimization, an optimized and flexible the proposed model is generated in a dynamic fashion. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.