• Title/Summary/Keyword: Genes

Search Result 11,690, Processing Time 0.053 seconds

Cytoprotective Effects and Gene Expression Patterns Observed Based on the Antioxidant Activity of Lonicera japonica Extract (금은화 추출물의 항산화 효과를 통한 세포 보호효과 및 유전자 발현 양상)

  • Cho, Won June;Yoon, Hee Seung;Kim, Yong Hyun;Kim, Jung Min;Yoo, Il Jae;Han, Man-Deuk;Bang, In Seok
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.989-997
    • /
    • 2013
  • In this study, based on the antioxidative effects in organic solvent fractions obtained from the main methanolic extract of L. japonica, the protective cellular effects and gene expression patterns of ethyl acetate fractions on $H_2O_2$-induced Raw 264.7 cell death ($IC_{50}$) were analyzed. The antioxidant activity of the fractions measured using DPPH free radical scavenging activity increased in a dose-dependent manner, and the $ED_{50}$ exhibited the highest $39.56{\mu}g/ml$ in the ethyl acetate fraction. In addition, the ethyl acetate fractions' cell viability on $H_2O_2$-induced Raw 264.7 cell damage increased in a concentration-dependent manner, showed a visible cell survival rate of 82.49% at a concentration of $100{\mu}g/ml$. The gene expression patterns related to the ethyl acetate fractions' cytoprotective effect in $H_2O_2$-induced Raw 264.7 cell damage presented similar patterns to those of BHA. In comparative analysis for antioxidant activity-related genes affected by ethyl acetate fractions and BHA in $H_2O_2$-induced Raw 264.7 cells, both ethyl acetate fractions and BHA showed very similar gene expression patterns, but the gene expression level of the heme oxygenase 1 (Hmox1) gene making antioxidant enzymes in cells was four times higher in ethyl acetate fractions than BHA. In inflammation-related genes in $H_2O_2$induced Raw 264.7 cells, the T-box transcription factor (Tbx21) gene was expressed about two times more frequently in the ethyl acetate fraction treatment group, while it was expressed half as frequently in the BHA treatment group.

Immunomodulatory Effects of β-sitosterol and Daucosterol Isolated from Dioscorea batatas on LPS-stimulated RAW 264.7 and TK-1 Cells (산약에서 분리한 β-sitosterol과 daucosterol의 RAW 264.7 세포와 TK-1 세포에서의 면역 활성 조절 효능)

  • Park, Min-Kyung;Cho, Sehee;Ahn, Tae-Kyu;Kim, Do-Hyun;Kim, So-Yeon;Lee, Jin-Wook;Kim, Jee-In;Seo, Eul-Won;Son, Kun-Ho;Lim, Jae-Hwan
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.359-369
    • /
    • 2020
  • Although many studies on immune modulatory materials have used RAW 264.7 cells, few have used T cell-derived TK-1 cell lines. Moreover, although some studies have investigated the efficacy of plant-derived β-sitosterol, few have examined the immunomodulatory activity of its analogue, daucosterol. In this study, β-sitosterol and daucosterol were isolated from D. batatas and identified by nuclear magnetic resonance spectroscopy. To evaluate the immune-enhancing or inhibitory effects of the isolated phytosterols, the expression levels of the inflammatory response genes COX-2, TNF-α, IL-6, and iNOS were analyzed by RT-PCR. The relative expression levels of TNF-α and iNOS in RAW 264.7 cells were increased more than threefold with β-sitosterol treatment comparing to those of untreated control. In the case of TK-1 cells, the expression level of TNF-α was decreased and the expression level of iNOS was increased in a β-sitosterol concentration-dependent manner. The expression levels of COX-2, TNF-α, and IL-6 increased by approximately 0.7-1.2 times in RAW 264.7 cells treated with daucosterol compared to those of untreated control, but iNOS expression decreased by 0.8-0.18 times. In the case of daucosterol-treated TK-1 cells, the expression levels of TNF-α, IL-6, and iNOS were markedly reduced from those of TK-1 cells treated only with lipopolysaccaride. As a conclusion, β-sitosterol treatment increased TNF-α and iNOS expression levels in RAW 264.7 cells, thus exerting an immune- boosting effect. However, in TK-1 cells, iNOS expression increased while TNF-α expression decreased, indicating an immunosuppressive activity of β-sitosterol. Daucosterol appears to exert an immunosuppressive effect in both macrophages and T cell lines by inhibiting iNOS expression in RAW 264.7 cells and greatly inhibiting the expression of TNF-α, IL-6, and iNOS in TK-1 cells.

MicroRNA Expression Profiling in Cell and Mouse Models of Fabry Disease to Identify Biomarkers for Fabry Disease Nephropathy (파브리병의 바이오마커 발굴을 위한 파브리 마우스와 세포모델에서의 microRNA 발현 분석)

  • Jung, Namhee;Park, Saeyoung;Jeon, Yeo Jin;Choi, Yoonyoung;Jung, Sung-Chul
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.3
    • /
    • pp.127-137
    • /
    • 2015
  • Purpose: The main aim of this study was to compare and analyze expression profiles of microRNAs (miRNAs) to establish miRNA signature of Fabry nephropathy related epithelial mesenchymal transition (EMT). Methods: Expression profiles of miRNAs in kidney tissue samples and cell lines from normal and Fabry disease mouse model were examined by miRNA expression microarray analysis followed by quantitative real-time polymerase chain reaction analysis (qRT-PCR). Results: In the miRNA expression microarray analysis of Fabry mouse kidney tissues compared to wild type mouse, 5 and 3 miRNAs among 1,247 miRNAs examined were up- and down-regulated, respectively. Among them, miR-149-5p was down-regulated about 2-fold in Fabry kidney samples. The down-regulations of miR-149-5p were observed in kidney tissues of under 35 week-old-Fabry mice. However, this down-regulation was not observed in kidney tissues of 42 week-old Fabry mice. In SV40 MES 13 cells, mouse mesangial cells, treated with globotriaosylsphingosine (lyso-Gb3), miR-149-5p was also downregulated. The down-regulation of miR-149-5p induced up-regulation of its target genes related to EMT. Conclusion: The miRNA expression array and qRT-PCR results show that miR-149-5p expression was decreased in kidney tissues of Fabry mice compared to wild type mice under 35 weeks of age. Along with the observation of miR-149-5p expression in Fabry disease cell models, these results indicate that the down-regulated miR-149-5p were related to the biological response of mesangial cells to lyso-Gb3 and also have influence to the transcriptional up-regulation of its target genes. These results suggest miR-149-5p might play important roles in the Fabry nephropathy.

Effects of Garcinia cambogia Extract on the Adipogenic Differentiation and Lipotoxicity (가르시니아 캄보지아 추출물의 지방세포 분화 및 지방 독성에 미치는 영향)

  • Kang, Eun Sil;Ham, Sun Ah;Hwang, Jung Seok;Lee, Chang-Kwon;Seo, Han Geuk
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.411-416
    • /
    • 2013
  • This study aimed to examine the mechanisms underlying the effects of Garcinia cambogia extract on the adipogenic differentiation of 3T3-L1 cells and long-chain saturated fatty acid-induced lipotoxicity of HepG2 cells. 3T3-L1 preadipocytes, mouse embryonic fibroblast-adipose like cell line, were treated with MDI solution (0.5 mM IBMX, 1 ${\mu}M$ dexamethasone, 10 ${\mu}g/mL$ insulin) to generate a cellular model of adipocyte differentiation. Using this cellular model, the anti-obesity effect of Garcinia cambogia extract was evaluated. MDI-induced lipid accumulation and expression of adipogenesis-related genes were detected by Oil red O staining, Nile Red staining, and Western blot analysis. Effects Garcinia cambogia extract on palmitate-induced lipotoxicity was also analyzed by MTT assay, LDH release, and DAPI staining in HepG2 cells. Garcinia cambogia extract significantly suppressed the adipogenic differentiation of preadipocytes and intracellular lipid accumulation in the differentiating adipocytes. Garcinia cambogia extract also markedly inhibited the expression of peroxisome proliferator- activated receptor ${\gamma}2$ ($PPAR{\gamma}2$), CCAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$), and adipocyte protein aP2 (aP2). In addition, Garcinia cambogia extract significantly attenuated palmitate-induced lipotoxicity in HepG2 cells. Palmitateinduced cellular damage and reactive aldehydes were also significantly reduced in the presence of Garcinia cambogia extract. These findings suggest that the Garcinia cambogia extract inhibits the adipogenic differentiation of 3T3-L1 preadipocytes, probably by regulating the expression of multiple genes associated with adipogenesis such as $PPAR{\gamma}2$, $C/EBP{\alpha}$, aP2, and thereby modulating fatty acid-induced lipotoxicity to reduce cellular injury in hepatocytes.

Transformation of Potato using the Phosphinothricin Acetyltransferase Gene as the Selectable Marker Gene (감자의 형질전환을 위한 표지유전자로서 Phosphinothricin Acetyltransferase 유전자의 이용)

  • Jeong, J.H.;Yang, D.C.;Bang, K.S.;Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.18 no.3
    • /
    • pp.205-213
    • /
    • 1998
  • This experiment was carried out to produce herbicide resistant potatoes hawing only chimeric phosphinothricin acetyltransferase (PAT) genes without using antibiotic selectable marker. The pDY502 vector having only PAT gene was reconstructed for transformation of potato. The reconstructed vector was introduced to Agrobacterium tumefaciens MP90 disarmed, and they were used for potato transformation. Hormonal requirement for plant regeneration from leaves and stem explants of potato was investigated. From this experiment, MS medium treated with IBA 0.1 mg/L + BA 0.5 mg/L was the best for potato regeneration, and the ratio of shoot regeneration was 54% for leaf and 46% for stem in that condition. For transformation, explants of potato leaves and stems were cocultured with A. tumefaciens MP90 containing reconstructed vector harvoring only PAT gene. When the potato explants were placed on various concentrations of bialaphos and all the potato explants were dead on medium with over 5.0mg/L bialaphos. By this selection methods, the explants cocultured with Agrobacterium produced the putative transgenic shoots on medium with 5mg/L bialaphos treatment after 3-4 weeks. Second selection was performed by transferring the shoot tips of putative transgenic to medium containing 20mg/L of bialaphos. The shoot tips grew well on the second selection medium, indicating the production of successful transgenic plants. But normal shoots were dead in same cytotoxic medium. Incorporation of the PAT gene into transgenic potatos were confirmed by PCR analysis of DNA and Southern hybridization. These results show that the PAT gene can serve as a selectable marker and herbicide resistant genes for transformation of potato.

  • PDF

Transfer of Genes for Antimicrobial Resistance and Toxin of Hemolytic Escherichia coli Isolated from Feces of Pig Suffering Diarrhea to Human Isolates (설사 증상의 돼지 분변에서 분리된 용혈성 대장균의 항생제 내성과 독소의 인체로부터 분리된 균주로의 전이)

  • Lee Kyenam;Jung Byeong Yeal;Lee Yeonhee
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.286-294
    • /
    • 2004
  • Between 1997 and 1998 in Korea, 56 isolates of Escherichia coli were obtained from pig suffering diarrhea. Among those, 38 isolates that showed the hemolytic activity, antimicrobial resistance, and toxin production were studied. Among 38 isolates, thirty-six isolates $(94.7\%)$ were resistant to tetracycline, 27 isolates $(71.0\%)$ were resistant to ampicillin, 26 isolates $(68.4\%)$ were resistant to chloramphenicol, and 21 isolates $(55.2\%)$ were resistant to trimethoprim, while none was resistant to aztreonam, amikacin, and norfloxacin. Among these iso­lates, 21 isolates $(55.3\%)$ were multiple drug resistant to at least four different class antimicrobial agents. Extended spectrum $\beta-lactamase$ producing isolates were not detected in the double disk synergy test. In these hemolytic Escherichia coli, heat-stable enterotoxin $(89.5\%)$ was the most prevalent toxin, followed by vero­toxins $(47.4\%),$ and then heat-labile enterotoxin $(31.6\%).$ Except 8 isolates $(21.0\%)$ which produced ST only, 12 isolates $(31.6\%)$ produced ST and LT, 13 isolates $(34.2\%)$ produced ST, VT, and VTe, and 5 isolates $(13.2\%)$ produced VT and VTe. However, none produced all 4 types of toxin, simultaneously. The predominant serotype could not be determined by the agglutination method. Sixteen isolates $(42.1\%)$ were strongly adhered to T-24 bladder cell and 17 isolates $(44.7\%)$ were to Caco-2 intestinal cell. Especially, 11 strains $(28.9\%)$ were evaluated as strongly adhesive to both T-24 cells and Caco-2 cells. Genes for toxin and the antimicrobial resistance were transferred to clinical isolates of Escherichia coli from human urine by the filter mating method. Results suggest the possibility that antimicrobial resistance and toxin can be transferred from animals to humans by direct con­tact of resistant bacteria as well as gene transfer, although there was no correlation between toxin production, adherent activity, and antimicrobial resistance among hemolytic E. coli isolated from pig suffering diarrhea.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

Identification of Raw Materials in Processed Meat Products by PCR Using Species-Specific Primer (종 특이 프라이머를 이용한 식육가공품의 사용원료 판별법)

  • Park, Yong-Chjun;Ahn, Chi-Young;Jin, Sang-Ook;Lim, Ji-Young;Kim, Kyu-Heon;Lee, Jae-Hwang;Cho, Tae-Yong;Lee, Hwa-Jung;Park, Kun-Sang;Yoon, Hae-Sung
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.1
    • /
    • pp.68-73
    • /
    • 2012
  • In this study, a method was developed using molecular biological technique to distinguish an authenticity of meats for processed meat products. The genes for distinction of species about meats targeted at 12S or 16S genes in mitochondrial DNA and the species-specific primers were designed by that PCR products' size was around 200bp for applying to processed products. The target materials were 10 species of livestock products and it checked whether expected PCR products were created or not by electrophoresis after PCR using species-specific primers. The results of PCR for beef, pork, goat meat, mutton, venison, and horse meat were 131, 138, 168, 144, 191, and 142 bp each. The expected PCR products were confirmed at 281, 186, 174, and 238 bp for chicken, duck, turkeymeat, and ostrich. Also, non-specific PCR products were not detected in similar species by species-specific primers. The method using primers developed in this study confirm to be applicable for composite seasoning including beefs and processed meat products including pork and chicken. Therefore, this method may apply to distinguish an authenticity of meats for various processed products.

Relationship Between MC1R and ASIP Genotypes and Basic Coat Colors in Jeju Horses (제주마의 기본모색과 MC1R과 ASIP 유전자형 조합의 상관관계)

  • Kim, Nam-Young;Han, Sang-Hyun;Lee, Sung-Soo;Lee, Chong-Eon;Park, Nam-Geon;Ko, Moon-Suck;Yang, Young-Hoon
    • Journal of Animal Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.107-111
    • /
    • 2011
  • This study was undertaken to reveal the relationship between genetic variations and the basic coat color classification system in Jeju horses. Genetic variations of the melanocortinreceptor 1 (MC1R) and agouti signaling protein (ASIP) genes were investigated using pyrosequencing technique. A nucleotide substitution mutation for MC1R g.901C>T and an ASIP 11-bp deletion mutation were screened. Black horses had MC1R $E^+$/- ($E^+/E^+$ or $E^+/E^e$) and ASIP $A^a/A^a$ genotypes. In contrast, chestnut horse genotypes were MC1R $E^e/E^e$ and ASIP -/-. Thus, black and bay horses have at least one dominant MC1R allele, $E^+$, whereas chestnut horses have homozygous recessive alleles $E^e/E^e$. This suggests that the MC1R genotypes determine chestnut or black/bay coat color, regardless of the genotype distribution of ASIP. In addition, the horses with MC1R $E^+$/- and a dominant ASIP $A^A$/- allele showed bay coat color, but not black, suggesting that the ASIP $A^A$ allele represses black coat color development in the hairs of the body, but not in the mane and all four legs. Pedigree analysis showed a consistent relationship between the genotype distribution of the MC1R and ASIP genes and basic coat color patterns, even in the $F_1$ progeny. The results of this study revealed the relationship between the coat color phenotype and genetic background and suggested that useful information may be provided for molecular breeding of Jeju horses.

Allelism and Molecular Marker Tests for Genic Male Sterility in Paprika Cultivars (파프리카 시판 품종에 대한 유전자적 웅성불임성의 대립성 및 분자표지의 유용성 검정)

  • Lee, Jun-Dae;Do, Jae-Wahng;Han, Jung-Heon;An, Chul-Geon;Kweon, Oh-Yoel;Kim, Yong-Kwon;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.130-134
    • /
    • 2011
  • Paprika (Capsicum annuum L.), a colored bell-type sweet pepper, is one of the most important money making vegetable crops in Korea. The cultivation area, total production, and exports of paprika are gradually getting increased, but the paprika cultivars used in Korea are all imported. It was well-known that the genic male sterility (GMS) is the main way to produce paprika hybrid seeds. However, it is little known that how many and what kinds of ms genes are used for breeding of paprika $F_1$ varieties. In this study, eight paprika cultivars ('Special', 'Debla', 'Plenty', 'Fiero', 'Boogie', 'Fiesta', 'Derby', and 'Minibell'), popularly cultivated in Korea and three different genic male sterile lines ('GMSP', 'GMS3', and 'GMSK') were used. For allelism test among the $F_1$ cultivars, half diallel crosses were performed. The result demonstrated that the most of the GMS in paprika cultivars except for 'Minibell' were same allele. To identify which GMS gene(s) were used for paprika $F_1$ cultivars, top crosses between previously known GMS lines and the $F_1$ cultivars were performed. As a result, we found that the $ms_k$ and the $ms_p$ genes were alleles for the GMS of 'Minibell' and for the other cultivars, respectively. We also confirmed that the GMS gene identification using GMSK-CAPS marker linked to the $ms_k$ gene and the PmsM1-CAPS marker linked to the $ms_p$ gene in $F_2$ progenies of 'Minibell' and 'Fiesta' and 'Derby' cultivars, respectively. In addition, we developed the PmsM2-CAPS marker for 'Plenty', 'Fiero', and 'Boogie' cultivars. We expect that these markers will be very useful for breeding new maternal (male sterile) line of paprika.