• 제목/요약/키워드: Generic terms

검색결과 107건 처리시간 0.02초

점 근사 동특성 모델을 이용한 고리 원자력 1호기의 과도출력 전이 해석 (Point Kinetics Approach to the Analysis of Overpower Transients of the Ko-ri Unit 1 Reactor)

  • Hyun Dae Kim;Chang Hyun Chung;Chang Hyo Kim
    • Nuclear Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.153-161
    • /
    • 1981
  • 고리 원자력 1호기에서 일어날 수 있는 가상사고에 의한 동특성 현상이 점근사 원자로 모델에 의한 중성자 및 온도 방정식을 사용하여 해석되었다. 일반적으로 수치해석 결과는 사고해석에 있어서 확실한 동특성 시간전이 현상을 예견하기 위채서는 보다 정밀한 계산모델을 사용해야 된다는 것을 지시한다. 전출력 상태에서 RCCA 인출에 따르는 출력반응의 경우는 점근사 원자로 모델이 고리 1호기의 최종 안정성 분석 보고서의 해석결과와 우수한 일치를 보여줬다.

  • PDF

레니프릴정(에날라프릴 10 mg)에 대한 에날라프릴정의 생물학적 동등성 평가 (Bioequivalence Study of Enalapril Tablet to $Lenipril^{(R)}$ Tablet)

  • 노금한;배경진;강원구
    • 한국임상약학회지
    • /
    • 제19권1호
    • /
    • pp.61-64
    • /
    • 2009
  • The study was designed to compare the rate and extent of absorption of two enalapril tablets (10 mg), which has been widely used for the treatment of hypertension. This bioequivalence study was conducted using a standard preparation as reference and a generic as test in 24 male healthy volunteers. After an overnight fast, a single dose of the test or reference drugs were given with a washout period of 7 days. Heparinized blood samples were serially collected up to 10 hr. Plasma enalapril concentrations were quantified using a validated LC-MS/MS method. The data obtained for each subject was evaluated for $C_{max}$ and $AUC_{10hr}$ with respect to 90% confidence interval for log-transformed data. The 90% confidence intervals were log(0.9384)~log(1.1160) for $AUC_{10hr}$ and log(0.9482)~log(1.1474) for $C_{max}$. Thus, we concluded that the test and reference formulation are bioequivalent in terms of rate and extent of absorption.

  • PDF

ATM 망에서 UPC 파라미터로 제어된 VBR 트래픽 모델링 및 호 수락 제어 (Traffic Modeling and Call Admission Control GCRA-Controlled VBR Traffic in ATM Network)

  • 정승욱;정수환
    • 한국통신학회논문지
    • /
    • 제27권7C호
    • /
    • pp.670-676
    • /
    • 2002
  • ATM 망에는 서비스 품질을 보장하기 위한 여러 가지 트래픽 관리 기법이 있다. 이 중 호 수락 제어는 실시간 서비스를 위해 매우 중요한 관리 기법이며 단일 소스 모델로 ON-OFF 모델이 사용되어졌다. 그러나 ON-OFF 모델의 트래픽과 ATM 망에서 실시간 서비스를 위해 이중 GCRA로 제어된 트래픽은 차이가 있다. 따라서 본 논문에서는 이중 GCRA로 제어된 트래픽을 분석하여 삼 상태 최악의 경우 모델(Three-state Worst-case Model: TWM)을 제안하고 최대 지연 변이를 보장해 줄 수 있는 호 수락 제어 방안을 제시한다. 기존의 ON-OFF 모델과 TWM을 실험적으로 비교하고 TWM이 서비스 품질 보장면에서 우수함을 보인다.

On eBay's Fee Structure from a Channel Coordination Perspective

  • Chen, Jen-Ming;Cheng, Hung-Liang;Chien, Mei-Chen
    • Industrial Engineering and Management Systems
    • /
    • 제9권2호
    • /
    • pp.97-106
    • /
    • 2010
  • Can eBay.com's fee structure coordinate the channel? It's a critical strategic problem in e-commerce operations and an interesting research hypothesis as well. eBay's fees include three parts: monthly subscription fee, insertion fee, and final value fee (i.e., a revenue sharing portion), which represent a generic form of revenue sharing fee structure between the retailer and the vendor in a supply chain. This research deals with such a channel consisting of a price-setting vendor who sells products through eBay's marketplace exclusively to the end customers. The up- and down-stream channel relationship is consignment-based revenue sharing. We use a game-theoretic approach with assumption of the retailer (i.e., eBay.com) being a Stackelberg-leader and the vendor being a follower. The Stackelberg-leader decides on the terms of revenue sharing contract (i.e., fee structure), and the follower (vendor) decides on how many units to sell and the items' selling price. This study formulates several profit-maximization models by considering the effects of the retail price on the demand function. Under such settings, we show that eBay's fee structure can improve the channel efficiency; yet it cannot coordinate the channel optimally.

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect

  • Katariya, Pankaj V.;Panda, Subrata Kumar
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.279-288
    • /
    • 2020
  • The computational post-buckling strength of the tilted sandwich composite shell structure is evaluated in this article. The computational responses are obtained using a mathematical model derived using the higher-order type of polynomial kinematic in association with the through-thickness stretching effect. Also, the sandwich deformation behaviour of the flexible soft-core sandwich structural model is expressed mathematically with the help of a generic nonlinear strain theory i.e. Green-Lagrange type strain-displacement relations. Subsequently, the model includes all of the nonlinear strain terms to account the actual deformation and discretized via displacement type of finite element. Further, the computer code is prepared (MATLAB environment) using the derived higher-order formulation in association with the direct iterative technique for the computation of temperature carrying capacity of the soft-core sandwich within the post-buckled regime. Further, the nonlinear finite element model has been tested to show its accuracy by solving a few numerical experimentations as same as the published example including the consistency behaviour. Lastly, the derived model is utilized to find the temperature load-carrying capacity under the influences of variable factors affecting the soft-core type sandwich structural design in the small (finite) strain and large deformation regime including the effect of tilt angle.

Capabilities of 1D CUF-based models to analyse metallic/composite rotors

  • Filippi, Matteo;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • 제3권1호
    • /
    • pp.1-14
    • /
    • 2016
  • The Carrera Unified Formulation (CUF) is here extended to perform free-vibrational analyses of rotating structures. CUF is a hierarchical formulation, which enables one to obtain refined structural theories by writing the unknown displacement variables using generic functions of the cross-section coordinates (x, z). In this work, Taylor-like expansions are used. The increase of the theory order leads to three-dimensional solutions while, the classical beam models can be obtained as particular cases of the linear theory. The Finite Element technique is used to solve the weak form of the three-dimensional differential equations of motion in terms of "fundamental nuclei", whose forms do not depend on the adopted approximation. Including both gyroscopic and stiffening contributions, structures rotating about either transversal or longitudinal axis can be considered. In particular, the dynamic characteristics of thin-walled cylinders and composite blades are investigated to predict the frequency variations with the rotational speed. The results reveal that the present one-dimensional approach combines a significant accuracy with a very low computational cost compared with 2D and 3D solutions. The advantages are especially evident when deformable and composite structures are analyzed.

Uncertainty in Scenarios and Its Impact on Post Closure Long Term Safety Assessment in a Potential HLW Repository

  • Y.S. Hwang;Kim, S-K;Kang, C-H
    • Nuclear Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.108-120
    • /
    • 2003
  • In assessing the long term post closure radiological safety assessment of a potential HLW repository in Korea, three categories of uncertainties exist. The first one is the scenario uncertainty where series of different natural events are translated into written statements. The second one is the modeling uncertatinty where different mathematical models are applied for an identical scenario. The last one is the data uncertainty which can be expressed in terms of probabilistic density functions. In this analysis, three different scenarios are seleceted; a small well scenario, a radiolysis scenario, and a naturally discharged scenario. The MASCOT-K and the AMBER, probabilistic safety assessment codes based on connection of sub-modules and a compartment theory respectively, are applied to assess annual individual doses for a generic biosphere. Results illustrate that for a given scenario, predictions from two different codes fairly match well each other But the discrepancies for the different scenarios are significant. However, total doses are still well below the guideline of 2 mRem/yr. Detailed analyses with model and data uncertainties are underway to further assure the safety of a Korean reference dispsoal concept.

Multiple Path Based Vehicle Routing in Dynamic and Stochastic Transportation Networks

  • Park, Dong-joo
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 2000년도 제37회 학술발표회논문집
    • /
    • pp.25-47
    • /
    • 2000
  • In route guidance systems fastest-path routing has typically been adopted because of its simplicity. However, empirical studies on route choice behavior have shown that drivers use numerous criteria in choosing a route. The objective of this study is to develop computationally efficient algorithms for identifying a manageable subset of the nondominated (i.e. Pareto optimal) paths for real-time vehicle routing which reflect the drivers' preferences and route choice behaviors. We propose two pruning algorithms that reduce the search area based on a context-dependent linear utility function and thus reduce the computation time. The basic notion of the proposed approach is that ⅰ) enumerating all nondominated paths is computationally too expensive, ⅱ) obtaining a stable mathematical representation of the drivers' utility function is theoretically difficult and impractical, and ⅲ) obtaining optimal path given a nonlinear utility function is a NP-hard problem. Consequently, a heuristic two-stage strategy which identifies multiple routes and then select the near-optimal path may be effective and practical. As the first stage, we utilize the relaxation based pruning technique based on an entropy model to recognize and discard most of the nondominated paths that do not reflect the drivers' preference and/or the context-dependency of the preference. In addition, to make sure that paths identified are dissimilar in terms of links used, the number of shared links between routes is limited. We test the proposed algorithms in a large real-life traffic network and show that the algorithms reduce CPU time significantly compared with conventional multi-criteria shortest path algorithms while the attributes of the routes identified reflect drivers' preferences and generic route choice behaviors well.

  • PDF

Conceptual Data Modeling: Entity-Relationship Models as Thinging Machines

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.247-260
    • /
    • 2021
  • Data modeling is a process of developing a model to design and develop a data system that supports an organization's various business processes. A conceptual data model represents a technology-independent specification of structure of data to be stored within a database. The model aims to provide richer expressiveness and incorporate a set of semantics to (a) support the design, control, and integrity parts of the data stored in data management structures and (b) coordinate the viewing of connections and ideas on a database. The described structure of the data is often represented in an entity–relationship (ER) model, which was one of the first data-modeling techniques and is likely to continue to be a popular way of characterizing entity classes, attributes, and relationships. This paper attempts to examine the basic ER modeling notions in order to analyze the concepts to which they refer as well as ways to represent them. In such a mission, we apply a new modeling methodology (thinging machine; TM) to ER in terms of its fundamental building constructs, representation entities, relationships, and attributes. The goal of this venture is to further the understanding of data models and enrich their semantics. Three specific contributions to modeling in this context are incorporated: (a) using the TM model's five generic actions to inject processing in the ER structure; (b) relating the single ontological element of TM modeling (i.e., a thing/machine or thimac) to ER entities and relationships; and (c) proposing a high-level integrated, extended ER model that includes structural and time-oriented notions (e.g., events or behavior).

Reliability-based approach for fragility assessment of bridges under floods

  • Raj Kamal Arora;Swagata Banerjee
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.311-322
    • /
    • 2023
  • Riverine flood is one of the critical natural threats to river-crossing bridges. As floods are the most-occurred natural hazard worldwide, survival probability of bridges due to floods must be assessed in a speedy but precise manner. In this regard, the paper presents a reliability-based approach for a rapid assessment of failure probability of vulnerable bridge components under floods. This robust method is generic in nature and can be applied to both concrete and steel girder bridges. The developed methodology essentially utilizes limit state performance functions, expressed in terms of capacity and flood demand, for probable failure modes of various vulnerable components of bridges. Advanced First Order Reliability Method (AFORM), Monte Carlo Simulation (MCS), and Latin Hypercube Simulation (LHS) techniques are applied for the purpose of reliability assessment and developing flood fragility curves of bridges in which flow velocity and water height are taken as flood intensity measures. Upon validating the proposed method, it is applied to a case study bridge that experiences the flood scenario of a river in Gujarat, India. Research outcome portrays how effectively and efficiently the proposed reliability-based method can be applied for a quick assessment of flood vulnerability of bridges in any flood-prone region of interest.