• Title/Summary/Keyword: Generator system modeling

Search Result 267, Processing Time 0.028 seconds

Fault Simulation and Analysis of Generator (발전기의 사고 시뮬레이션과 분석)

  • Park, Chul-Won;Oh, Yong-Taek
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.151-158
    • /
    • 2013
  • Large generator of power plant is very important. In order to protect large generator from faults, digital protective relay or IED is required. However, all protective relays for generators of the domestic power plant are operated by foreign products. And now, for technological independence from foreign and improvement of import substitution effect, IEDs using domestic technology are being developed. To evaluate performance of developing next-generation power devices, the study of the dynamic characteristics of the power plant, generator system modeling, fault simulation and analysis, should be considered. Specially, To obtain IEEE Standards COMTRADE format for relay operation test, generator system modeling and fault simulation using PSCAD/EMTDC tools must be preceded. Until now, a complete modeling of generator internal windings and fault simulation techniques dose not exist. In this paper, for evaluation performance of relay elements of developing IED, the generator system modeling and various faults simulation using PSCAD/EMTDC tools were performed. And then, the various transient phenomena through obtained relaying signal of developed modeling were analyzed.

Modeling and Fault Simulation of Hydro Generator Control System (수력 발전기 제어설비의 모델링과 사고 시뮬레이션)

  • Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.102-107
    • /
    • 2015
  • In this paper, the generator control system by using PSCAD/EMTDC was modeled and several faults simulation were performed. The generator control system is composed of generator, turbine, exciter and governor. The parameters of generator control system model were obtained from field power plant. And then, the various transient phenomena through obtained several signal of developed modeling were analyzed.

Modeling and Simulation of Loss of Excitation of Hydro Generator Control System (수력 발전기 제어시스템의 계자상실 모델링과 시뮬레이션)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.74-80
    • /
    • 2014
  • Generator protection device has to detects an internal fault conditions in generator and abnormal operating conditions must be due to the hazards. Loss of excitation may cause generator itself failure as well as serious operating problem in power system, and then requires an appropriate response of generator protection device. Details modeling of generator control system and analysis of transient states in generator are important for optimal operation in power plants. In addition, the fault simulation data are also used for testing the characteristics of IED. In this paper, the hydro generator control system using PSCAD/EMTDC, visual simulation for power systems, was modeled. The generator control system which is composed of generator, turbine, exciter, governor was implemented. The parameters of generator control system model were obtained from field power plant. Loss of excitation simulations were performed while varying the fixed load. Several signals analysis were also performed so as to analyze transients phenomena.

An Experimental Study upon Modeling and Control of Coupled Engine and Generator System (엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

Modeling of Hybrid Generation System with Wind Turbine and Diesel Generator (풍력-디젤 하이브리드 발전시스템 모델링에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1806-1813
    • /
    • 2012
  • This paper proposes a modeling method for hybrid generation system with wind turbine and diesel generator applicable in island area. For modeling objects, squirrel-cage induction generator is considered as wind turbine generator and synchronous generator as diesel generator. Parameters and controllers related to them are established and modeled through analysis of traditional small capacity class. The simulation results for practical size hybrid generation system were suggested.

Modeling & Operating Algorithm of Hybrid Generation System with PMSG Wind Turbine, Diesel Generator and BESS (영구자석형 풍력-디젤-BESS 복합발전시스템 모델링 및 운전제어 알고리즘에 관한 연구)

  • Oh, Joon-Seok;Jeong, Ui-Yong;Park, Jong-Ho;Park, Min-Su;Kim, Jae-Eon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.724-729
    • /
    • 2016
  • Nowadays high-cost energy storage system using flywheel or secondary battery is applying to hybrid generation system with WT(Wind Turbine) and diesel generator in island areas for stable operation. This paper proposes an operating algorithm and modeling method of the hybrid generation system that can operate for variable wind speed and load, which is composed of energy storage system, variable-speed PMSG(Permanent Magnet Synchronous Generator) WT and diesel generator applied in island areas. Initially, the operating algorithm was proposed for frequency and voltage to be maintained within the proper ranges for load and wind speed changes. Also, the modeling method is proposed for variable speed PMSG WT, diesel generator and BESS(Battery Energy Storage System). The proposed operating algorithm and modeling method were applied to a typical island area. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.

System Level ESD Analysis - A Comprehensive Review I on ESD Generator Modeling

  • Yousaf, Jawad;Lee, Hosang;Nah, Wansoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2017-2032
    • /
    • 2018
  • This study presents, for the first time, state-of-the art review of the various techniques for the modeling of the electrostatic discharge (ESD) generators for the ESD analysis and testing. After a brief overview of the ESD generator, the study provides an in-depth review of ESD generator modeling (analytical, circuit and numerical modeling) techniques for the contact discharge mode. The proposed techniques for each modeling approach are compared to illustrates their differences and limitations.

Generator System Modeling for Large Generator Protection (대용량 발전기보호를 위한 발전기 모델링)

  • Park, Chul-Won;Ahn, Joon-Young;Lee, Sang-Seung;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.121-122
    • /
    • 2006
  • The generator system modeling for large generator protection is a significant portion for the analysis of installed apparatus and development of domestic production. In this paper, MATLAB EMTP/ATP, and PSCAD/EMTDC are used to simulate the transient phenomenon for the faults of generator.

  • PDF

T-S Fuzzy Modeling of Synchronous Generator in a Power System (전력계통 동기발전기의 T-S Fuzzy 모델링)

  • Lee, Hee-Jin;Baek, Seung-Mook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1642-1651
    • /
    • 2008
  • The dynamic behavior of power systems is affected by the interactions between linear and nonlinear components. To analyze those complicated power systems, the linear approaches have been widely used so far. Especially, a synchronous generator has been designed by using linear models and traditional techniques. However, due to its wide operating range, complex dynamics, transient performances, and its nonlinearities, it cannot be accurately modeled as linear methods based on small-signal analysis. This paper describes an application of the Takaki-Sugeno (T-S) fuzzy method to model the synchronous generator in a single-machine infinite bus (SMIB) system. The T-S fuzzy model can provide a highly nonlinear functional relation with a comparatively small number of fuzzy rules. The simulation results show that the proposed T-S fuzzy modeling captures all dynamic characteristics for the synchronous generator, which are exactly same as those by the conventional modeling method.

Modeling of Nuclear Power Plant Steam Generator using Neural Networks (신경회로망을 이용한 원자력발전소 증기발생기의 모델링)

  • 이재기;최진영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.551-560
    • /
    • 1998
  • This paper presents a neural network model representing complex hydro-thermo-dynamic characteristics of a steam generator in nuclear power plants. The key modeling processes include training data gathering process, analysis of system dynamics and determining of the neural network structure, training process, and the final process for validation of the trained model. In this paper, we suggest a training data gathering method from an unstable steam generator so that the data sufficiently represent the dynamic characteristics of the plant over a wide operating range. In addition, we define the inputs and outputs of neural network model by analyzing the system dimension, relative degree, and inputs/outputs of the plant. Several types of neural networks are applied to the modeling and training process. The trained networks are verified by using a class of test data, and their performances are discussed.

  • PDF