• Title/Summary/Keyword: Generator load

Search Result 901, Processing Time 0.034 seconds

Comparison and Analysis for Rotor losses of Permanent Magnet Synchronous Generator using Phase Current Harmonic Analysis according to DC and AC Loads (상전류 고조파 분석을 이용한 직교류 부하에 따른 영구자석 동기 발전기의 회전자 손실 특성해석 및 비교)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Choi, Jang-Young;Ko, Kyoung-Jin;Lee, Sung-Ho;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.721-722
    • /
    • 2008
  • This paper deals with comparison and analysis for rotor losses of permanent magnet synchronous generator using phase current harmonic analysis according to dc and ac load. On the basis of analytical field analysis, the rotor losses are analysed. Particularly, rated speed and ac load and the rated speed and dc load conditions are considered. This paper compared rotor losses considered dc load with rotor losses considered ac load. Although our analytical modes is low speed, the rotor losses must be considered by results.

  • PDF

A Design of Load Shedding System Considering both Angular Stability and Voltage Stability in Industrial Power System (산업용 전력계통의 주파수 안정도와 전압 안정도를 고려한 부하차단 설계)

  • Kim, Bong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.103-109
    • /
    • 2004
  • This paper has presented, taking an example of a gas separation plant, dynamic analysis on frequency decline caused by the over-loading at the generator and the knee point causing voltage instability due to reactive power required by re-acceleration of large induction motors, resulting in phenomena of failure in the conventional frequency load shedding. In order to resolve the voltage instability problem, a design of load shedding system employing under-voltage relays has been proposed to the industrial power system containing large induction motors in addition to the conventional load shedding employing frequency relays. For the purpose of dynamic analysis, models of gas turbine and governor, synchronous generator, brushless exciter, and induction motor are introduced.

A STUDY ON THE SELF-MATCHED LINE PULSE GENERATOR (자기정합 선로형 펄스 발생기에 관한 연구)

  • Paek, Yong-Hyun;Sohn, Jae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.184-187
    • /
    • 1990
  • This paper presents the self-matched line pulse generator and the concerned principles on its operation and characteristics are mentioned. The circuit consists of a charged transmission line and a high speed switch, and it generates a square wave pulse with the very fast rise time. The generated waveform depends on the load resistance. As the load resistance is infinite, a single rectangular wave pulse is generated and its efficiency is nearly unity.

  • PDF

Characteristics Analysis of Generator by Load Variation (부하변동에 따른 발전기 특성해석)

  • Kim, Jong-Gyeum
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.507-510
    • /
    • 2006
  • 본 논문은 신재생에너지의 한 분야로서 청정에너지인 소수력 발전시스템 운영시 수용가 부하의 변동에 따른 발전기의 특성변화를 해석한 것이다. 모의에 사용된 동기발전기-전동기가 부하의 변동에 따라 토크, 속도, 전류 등이 어떤 영향을 받는지 전자계 과도해석 프로그램을 사용하여 나타내었다.

  • PDF

Characteristics Analysis of Induction Generator with a Change in Rotor Speed (회전속도 변화에 따른 유도발전기의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung;Kim, Young-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2225-2229
    • /
    • 2011
  • Squirrel cage induction motor is the main driving system of industrial field and familiar with its use in a large variety of applications. However, many engineer are unfamiliar with the induction generator, even though no difference exists between both machines except for the mode of operation. But an induction generator is commonly used for micro & small hydro power applications due to its simplicity, reliability, low cost and robustness. Input and output of induction motor has turned against at the induction generator operation. Rotation speed of induction generator is small faster than induction motor. As output of induction machines increases with the increasement of speed, so loss is same. Actually, generator efficiency is lower than motor at this condition. If induction generator is connected with mechanical load, total efficiency is decreased. In this paper, we analyzed that input, output, torque and efficiency is different from each other above and below synchronous speed.

A case study on the vibration by fluid induced instability at large steam turbine-generator (대형 터빈-발전기에서의 유체 불안정진동 해소사례)

  • Han, Seung-Woo;Noh, Chel-Woo;Kim, In-Chul;Joo, In-Gouk;Kim, Myong-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1066-1071
    • /
    • 2007
  • This case study refers to turbine-generator with retrofitted turbine rotor. Vibration problem occurring after the retrofit was mainly due to high vibration from exciter side. However, repeated test run and operation during scheduled maintenance caused high vibration from generator bearing, and post-overhaul test run before turbine vibration correction caused oil whip on the bearing. This case study shows how to analyze vibration condition of high turbine generator vibration detected during the post-overhaul test run and vibration condition of offline and online data to reflect it on establishing maintenance schedule and overhaul correction procedure. Vibration data could be acquired during steady load operation or even with varying speed and load. Each data is important for machinery condition evaluation. This case study shows that the vibration data during extreme condition is the key factor in analysis, which helps to find the machinery problem.

  • PDF

A Study on the Generator Operation by the Electronic Consumption During the Summer in a Complex Building Cluster (복합시설의 하절기 전력사용량에 따른 발전기 가동현황 분석)

  • Kwon, Han-Sol;Kong, Dong-Seok;Kwak, Ro-Yeul;Huh, Jung-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.126-131
    • /
    • 2008
  • The large buildings in Korea usually use the generators to control the peak load of electronic consumption during the summer. It is necessary that these generators emit carbon dioxide, since they use gas or gasoline for their fuel. This study is to analyze the data of electronic consumption and operation of the generators at COEX, one of the representative complex building clusters in Korea, and to compare to the amount of carbon dioxide emitted per 1kWh from the domestic power plant by analogizing the frequency of using the generator during the summer and the amount of fuel consumption by the capacity of the generator and estimating the amount of carbon dioxide emitted from the generator.

  • PDF

A Case Study on the Vibration by Fluid Induced Instability at Large Steam Turbine-generator (대형 터빈-발전기에서의 유체 불안정진동 해소사례)

  • Han, Seung-Woo;Roh, Cheol-Woo;Yoo, Mu-Sang;Kim, In-Chul;Joo, In-Gouk;Kim, Myong-Shik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.238-246
    • /
    • 2008
  • This case study refers to turbine-generator with retrofitted turbine rotor. Vibration problem occurring after the retrofit was mainly due to high vibration from exciter side. However, repeated test run and operation during scheduled maintenance caused high vibration from generator bearing, and post-overhaul test run before turbine vibration correction caused oil whip on the bearing. This case study shows how to analyze vibration condition of high turbine generator vibration detected during the post-overhaul test run and vibration condition of offline and online data to reflect it on establishing maintenance schedule and overhaul correction procedure. Vibration data could be acquired during steady load operation or even with varying speed and load. Each data is important for machinery condition evaluation. This case study shows that the vibration data during extreme condition is the key factor in analysis, which helps to find the machinery problem.

Low-Load/Low-Eccentricity Performance Improvement Designs for Hydro Power Application of Cylindrical Turbine Guide Bearings - Introduction of Pad Leading-Edge Tapers (수력 원통형 터빈 가이드 베어링의 저부하/저편심 성능향상 설계 - 패드 선단 테이퍼의 도입)

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • In vertical hydro/hydraulic power turbine-generator applications, traditionally, cylindrical turbine guide bearings (TGBs) are widely used to provide turbine runner shafts with smooth rotation guides and supports. All existing cylindrical TGBs with simple plain pads have drawbacks such as having no pressure generation and film stiffness at the no-load condition and in addition, at the low-load/low-eccentricity condition, having very low film stiffness values and lacking design credibility in the stiffness values themselves. In this paper, in order to fundamentally improve the low-load/low-eccentricity performance of conventional cylindrical TGBs and thus enhance their design-application availability and usefulness, we propose to introduce a rotation-directional leading-edge taper to each partitioned pad, i.e., a pad leading-edge taper. We perform a design analysis of lubrication performance on $4-Pad{\times}4-Row$ cylindrical TGBs to verify an engineering/technical usefulness of the proposed pad leading-edge taper. Analysis results show that by introducing the leading-edge taper to each pad of the cylindrical TGB one can expect a constant high average direct stiffness with a high degree of design credibility, regardless of load value, even at the low-load/low-eccentricity condition and also control the average direct stiffness value by exploring the taper height as a design parameter. Therefore, we conclude that the proposed pad leading-edge tapers are greatly effective in more accurately predicting and controlling rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems to which cylindrical TGBs are applied.

Quantum-behaved Electromagnetism-like Mechanism Algorithm for Economic Load Dispatch of Power System

  • Zhisheng, Zhang;Wenjie, Gong;Xiaoyan, Duan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1415-1421
    • /
    • 2015
  • This paper presents a new algorithm called Quantum-behaved Electromagnetism-like Mechanism Algorithm which is used to solve economic load dispatch of power system. Electromagnetism-like mechanism algorithm simulates attraction and repulsion mechanism for particles in the electromagnetic field. Every solution is a charged particle, and it move to optimum solution according to certain criteria. Quantum-behaved electromagnetism-like mechanism algorithm merges quantum computing theory with electromagnetism-like mechanism algorithm. Superposition characteristic of quantum methodology can make a single particle present several states, and the characteristic potentially increases population diversity. Probability representation of quantum methodology is to make particle state be presented according to a certain probability. And the quantum rotation gates are used to realize update operation of particles. The algorithm is tested for 13-generator system and 40-generator system, which validates it can effectively solve economic load dispatch problem. Through performance comparison, it is obvious the solution is superior to other optimization algorithm.