• Title/Summary/Keyword: Generator Stator Winding

Search Result 124, Processing Time 0.029 seconds

Analysis of Overvoltage Distribution in Low-Voltage Induction Motor Due to Inverter Switching Surge (인버터 스위칭 써지에 의한 저압 유도전동기의 과도전압 분포해석)

  • Hwang, Don-Ha;Kim, Yong-Joo;Lee, In-Woo;Bae, Sung-Woo;Kim, Dong-Hee;Ro, Chae-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1151-1153
    • /
    • 2003
  • In this paper, switching surge voltage distribution in stator windings of induction motor driven by IGBT PWM inverter is studied. To analyze the irregular voltage of stator winding, equivalent circuit model of inverter-cable-motor was proposed and high frequency parameter is computed by using finite element method (FEM). Electromagnetic transient program (EMTP) analysis of the whole system for induction motor and PWM inverter is proposed. In order to experiment, an induction motor, 380 [V], 50 [HP], with taps from one phase and a switching surge generator was built to consider the voltage distribution.

  • PDF

Development of a 100 hp HTS Synchronous Motor (100마력 고온초전도 동기전동기 개발)

  • Sohn Myung-Hwan;Baik Seung-Kyu;Lee Eon-Young;Kwon Young-Kil;Jo Young-Sik;Kim Jong-Moo;Moon Tae-Sun;Kim Yeong-Chun;Kwon Woon-Sik;Park Heui-Joo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.94-100
    • /
    • 2005
  • Korea Electrotechnology Research Institute(KERI) has successfully developed a 100hp-1800rpm-class high temperature superconducting(HTS) motor with high efficiency under partnership with Doosan Heavy Industries & Construction Co. Ltd. This motor has a HTS field winding and an air-cooled stator. The advantages of HTS motor can be represented by a reduction of 50% in both losses and size compared to conventional motors of the same rating. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. Independently, the rotor assembly was tested at the stationary state and combined with stator. The HTS field winding could be cooled into below 30K. Test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Also, load tests in motor mode driven by inverter were finished at KERI. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction. and experimental test results of the 100hp HTS machine.

Design of Ultra High-Speed Micro-Scale Permanent Magnet Machine for Maximum Output Power Generation (최대 출력을 위한 초소형/초고속 영구자석 동기기의 설계)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Choi, Jang-Young;Park, Ji-Hoon;Kim, Hyun-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.80-82
    • /
    • 2008
  • This paper deals with the design of an 870 krpm class high-speed permanent magnet synchronous generator (PMSG) applied to micro turbine system. Since space where the high-speed PMSG coupled with the micro turbine occupies in the system is strictly limited, the work described in this paper is motivated by the desire to make maximum output power of the generator considering the rotor and stator structures, winding methods and bearing system under restricted space.

  • PDF

E.M.F Characteristic of Superconducting Synchronous Generator according to Design Parameter (설계변수 변화에 따른 초전도 동기 발전기의 유기기전력 특성)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.65-68
    • /
    • 1999
  • The major deisng parameters that are considered in this paper are: 1) EMF according to width of field coil. 2) EMF according to magnetic shield length. Because of superconducting generator (SG) is actually and air cored machine with its rotor iron and stator iron teeth having been removed. In this case, the desing of the SG must be based on the 3D analysis of the magnetic field. This study presents an effective armature winding type with 3D FEM(Finite Element Method), and compares analyzed and measured results.

  • PDF

The study of the complete protection for ground-fault of the generator stator winding based on the sihwa tidal power plant's hydraulic turbine generator (시화호조력발전소 수차발전기를 모델로 한 발전기 고정자권선 지락사고에 대한 100%보호방안 고찰)

  • Kang, Dong-Hyung;Park, Sung-Ho;Kim, Jong-Deug;Nam, Jin-Geuk;Choi, Hyeong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.184-186
    • /
    • 2007
  • 절연물의 열화가 진행되면 최초로 1선 지락사고가 발생할 가능성이 많고 1선 지락사고는 2선 지락 및 단락사고로 파급되어 설비에 심각한 손상으로 이어지게 된다. 따라서, 1선지 락 사고에 대한 완전한 보호방식의 적용은 설비 신뢰성 증대라는 측면에서 매우 중요한 사항이라고 판단된다. 이에 시화호조력 발전소에 설치될 수차발전기는 고정자권선의 지락사고에 대한 100%보호방식을 적용하였으며 이 설계사례를 토대로 실제적으로 적용가능한 발전기 고정자권선의 지락보호증대방식을 공유코자 한다.

  • PDF

Transient Characteristic Analysis of Damper in Superconducting Synchronous Generator by the Compensated 2D Analysis Model (보정된 2차원 해석모델에 의한 초전도 동기발전기의 댐퍼 과도특성 해석)

  • Chun, Yon-Do;Lee, Hyung-Woo;Lee, Ju;Hong, Jung-Pyo;Kwon, Young-Kil;Ryu, Kang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.93-101
    • /
    • 2000
  • This paper presents a novel method for the transient of eddy currents in the dampers of a super-conducting synchronous generator(SCG). The method proposes a 2-D corrected model which takes into account the influence of leakage fluxes of the field winding ends by increasing the effective air gap in order to consider the high precision of the analysis for the conventional 2-D model. The electromagnetic fields for the corrected model are analyzed by the time-stepping finite element method, thus the eddy currents in the dampers and electro-motive forces(EMF) in the stator windings are calculated. As the results, it is proved the presented method is comparatively accurate by comparing measured phase EMF values and the simulation ones, where about 6.4% error at the maximum value of EMF is occurred between them.

  • PDF

Analysis and Performance of the Self Excited Eddy Current Brake

  • Cho, Sooyoung;Jeong, Teachul;Bae, Jaenam;Yoo, Changhee;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.459-465
    • /
    • 2017
  • This paper describes a performance analysis of self-excited eddy current brake(SECB). Stator winding of SECB is connected by capacitor instead of voltage source, and SECB's braking force is generated by L-C resonance. SECB has wide range of driving and nonlinear inductance as well. Therefore, it is important to select capacitance based on the value of inductance. This paper discusses about the process of deciding capacitance and the change of resonance frequency based on the inductance change in each speed. Also the braking force was confirmed by the experimental model of SECB.

Thermal, Dielectric Properties Characteristics of Epoxy-nanocomposites for Organoclay of Several Types (여러종류의 Organoclay에 대한 에폭시-나노콤포지트의 열적, 유전특성에 관한 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Nanostructured materials are attracting increased interest and application. Exciting perspectives may be offered by electrical insulation. Epoxy/Organoclay nanocomposites may find new and upgraded applications in the electrical industry, replacing conventional insulation to provide improved performances in electric power apparatus, e.g, high voltage motor/generator stator winding insulation, dry mold transformer, etc. In the paper work, the electrical and thermal properties of epoxy/organoclay nanocomposites materials were studied. The electrical insulation characteristics were analyzed through the permittivity characteristics. by analyzing the permittivity spectra, it was found that dielectric constant becomes smaller with increase frequency and becomes larger with increase temperature. This indicates restriction of molecular motion and strong bonds at the epoxy/organoclay nanocomposites. The morphology of nanocomposites obtained was examined using TEM and X-ray diffraction. It has been shown that the presence of polar groups leads to an increased gallery distance and partial exfoliation. Nevertheless, full exfoliation of clay platelets has not been achieved.

Power and loss characteristics of PMSM/G with double-sided Halbach magnetized rotor (양측식 Halbach 자화 회전자를 갖는 영구자석 동기 전동발전기의 출력 및 손실 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Choi, Sang-Kyou
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.723-724
    • /
    • 2008
  • The rotational loss is one of the most important problems for the practical applications of PM synchronous motor/generator. This rotational loss is divided as the mechanical loss by windage and bearing and iron loss by hysteresis loop and eddy current in the part of the magnetic field. So, In this paper, a double-sided PMSM/G without the iron loss is designed by analytical method of the magnetic field and estimation of the back-EMF constant represented as the design parameter. This design model consists of the double-sided PM rotor with Halbach magnetized array and coreless 3-phase winding stator. The results show that the double-sided PMSM/G without iron loss can be applicable to the required system without the rotational loss.

  • PDF

Assessment of Insulation Condition for Hydro-generator (대용량 수치발전기의 절연진단에 의한 절연상태평가)

  • Lee, Kwang-Ho;Park, Jong-Jin;Kim, Ki-Won;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1810-1812
    • /
    • 2002
  • This test was performed to assess the insulation deterioration condition of the stator winding of Chung-Ju hydrogenerator #4 and Dae-Cheong hydrogenerator #2 which had been in service after being constructed 1980. The insulation diagnostic tests include resistance polarization index(P.I.) AC current, dissipation factor(Tan ${\delta}$) and partial discharges ($Q_{max}$). The results of diagnostic tests were compared to factory test measurements.

  • PDF