• 제목/요약/키워드: Generator Load Sharing

검색결과 22건 처리시간 0.022초

LNGC용 Power Generator 모델링 및 시뮬레이션 (Power Generator Modeling and Simulation for LNGC)

  • 황준태;홍석윤;권현웅;이광국;송지훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.297-299
    • /
    • 2016
  • 본 논문에서는 MATLAB/SIMULINK 기반의 LNG 선박용 Power Generator 모델링을 수행하고 시뮬레이션 결과 모니터링이 가능한 인터페이스를 구현하였다. Power Generator의 주요 구성은 기계적 동력을 공급하는 엔진부(Diesel 엔진, Turbine 엔진)와 기계적 동력을 받아 전력을 생산 및 공급을 하는 동기발전기가 있다. 또한, 단일 용량을 초과하는 전체 부하를 공유하기 위해 병렬 연결된 Generator의 Load Sharing과 선박의 가상 부하에 따른 시뮬레이션을 수행하였다. 시뮬레이션 결과와 가상 부하에 따른 예상 결과의 비교를 통해 Power Generator 모델링의 신뢰성을 검증하였다.

  • PDF

Low-Voltage and High-Current DC Output Realized by Multiple Power Cells Based on Deadbeat and Automatic Current Sharing Control

  • Liu, Jinfeng;Zhang, Yu;Wang, Xudong;IU, Herbert Ho-Ching
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1575-1585
    • /
    • 2017
  • This paper presents a synchronous generator with a distributed system of multiple parallel three-phase power cells. This generator can immediately output high DC. Each power cell comprises three-phase windings and a three-phase synchronous rectification bridge with a deadbeat control of load power feedforward, which can improve the characteristics of dynamic response and reflect the load variance in real time. Furthermore, each power cell works well independently and modularly using the method of automatic maximum current sharing. The simulation and experimental results for the distributed controller of multiple power cells demonstrate that the deadbeat control method can respond quickly and optimize the quality of the energy. Meanwhile, automatic maximum current sharing can realize the validity of current sharing among power cells.

터빈-발전기 Governor Droop의 그래프와 비례식을 통한 특성 고찰 (Understanding Governor Droop of Turbine-Generator through Graph and Proportional Expression)

  • 이상중
    • 조명전기설비학회논문지
    • /
    • 제27권5호
    • /
    • pp.33-38
    • /
    • 2013
  • This paper presents a simpler calculation of the generator load sharing according to the change of system frequency and the droop setting of turbine-generator governor. The author firstly draws a graph based on the generator operation at rated MW output and normal frequency, and secondly, builds a proportional expression using the graph in order to obtain the solution in a simpler way rather than using conventional mathematical calculation, to provide the readers with an easier understanding of the droop setting of turbine-generator governor.

동적계획법을 이용한 발전기의 운전모드 및 최적부하 배분에 관한 연구 (A Study on Optimal Electric Load Distribution and Generator Operating Mode Using Dynamic Programming)

  • H-H Yoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.313-319
    • /
    • 2002
  • Since the oil crisis in 1970, a great deal of effort has been made to develop automatic electric load sharing systems as a part of the efforts to save energy. A large scale electric generating system composes more than two generators whose characteristics may be different. When such a system is operated individually or in parallel, the lagrange multiplier's method has difficulty in achieving optimal load distribution because generators usually have the limitations of the operating range with inequality constraints. Therefore, a suitable operating mode of generators has to be decided according to the selection of the generators to meet electric power requirements at the minimum cost. In this study, a method which solves the optimal electric load distribution problem using the dynamic programming technique is proposed. This study also shows that the dynamic programming method has an advantage in dealing with the optimal load distribution problem under the limitations of the operating range with inequality constraints including generator operation mode. In this study, generator operating cost curve of second order equation by shop trial test results of diesel generators are used. The results indicate that the proposed method can be applied to the ship's electric generating system.

100kV급 비상발전기용 통합제어기 (Unified Controller for 100kVA Emergency Generator)

  • 정창용;조정구;백주원;이종주;김용주;유동욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2801-2803
    • /
    • 1999
  • An unified controller for emergency generator is presented to control AVR and Governor and l00kVA power conditioner. This controller is operated to compensate current harmonics and asymmetries caused by nonlinear load and unbalance loads. The power conditioner shapes the source current sinusoidal in phase with source voltage and allows the generator to maximum power even to the single phase load. Also this power conditioner allows that three phase generator synchronizes with single phase main source and load sharing. An l00kVA generator system was built and the unified controller is realized with DSP(TMS320C32PCMA). Experimental results for many load conditions are presented to verify the performance of the unified controller.

  • PDF

디젤발전기 원동기의 운전특성 시뮬레이션 (Simulation of Operation Performance for DG Prime Mover)

  • 최순만;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.166-177
    • /
    • 1997
  • The prime mover performance of on - board Diesel Generator is well characterized by the variation of frequency and the load sharing on parallel running under electric load change. This study is aimed to configure the modeling for performance simulation regarding to DG operation which could be interested for education purpose or system analysis. The modeling had been made on the base of modules such as govenor, prime mover of diesel engine and generator with electric load system, which were then intergrated for total simula¬tion performance. One real model system has been introduced for deciding relating parameters and for the comparison of resulting performance in simulation. The responses from the modelling were confirmed in single and paralell operation, the results of which showed resonable accordance with the real system.

  • PDF

동적계획법을 이용한 선내 발전시스템의 최적부하분담 방법에 관한 연구 (A Study on Optimal Electric Load distribution of Generators on board using a Dynamic Programming)

  • 유희한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.106-112
    • /
    • 2000
  • Since the oil crisis, we have been concerned about the energy saving techniques of electric generating systems. As a part of the effort to save energy, automatic electric load sharing device was developed. Usually, ship's electric generating system consists of two or three sets of generator. And, electric generating system is operated as single or parallel operation mode according to the demanded electric power. Therefore, it is important to investigate generators operating mode for the supply of required electric power in the ship in order to decrease the operating cost. So, this paper suggests the method to solve the optimal electric load distribution problem by dynamic programming. And, this thesis indicates that the proposed method is superior to the lagrange multiplier's method in obtaining optimal load distribution solution in the ship's electric generating system.

  • PDF

직류 마이크로그리드의 전력 공유 정확도 및 전압 제어 성능 향상을 위한 전압 민감도 행렬 기반의 분산 제어 방법 (A Distributed Control Method based on Voltage Sensitivity Matrix in DC Microgrids for Improvement of Power Sharing Accuracy and Voltage Regulation Performance)

  • 이기영;고병선;이재석;김래영
    • 전력전자학회논문지
    • /
    • 제23권5호
    • /
    • pp.345-351
    • /
    • 2018
  • A distributed control method is proposed to improve the power sharing performance of bidirectional distributed generators and the voltage regulation performance of a DC bus in a DC microgrid. Voltage sensitivity analysis based on power flow analysis is conducted to analyze the structural characteristics of a DC microgrid. A distributed control method using a voltage sensitivity matrix is proposed on the basis of this analysis. The proposed method uses information received through the communication system and performs the droop gain variation method and voltage shift method without additional PI controllers. This approach achieves improved power sharing and voltage regulation performance without output transient states. The proposed method is implemented through a laboratory-scaled experimental system consisting of two bidirectional distributed generators, namely, a load and a non-dispatchable distributed generator in a four-bus ring-type model. The experimental results show improved power sharing accuracy and voltage regulation performance.

스팀터빈 발전기 비동기 투입 사례연구를 통한 비동기 방지 알고리즘 개발 (Development of Asynchronous Blocking Algorithm through Asynchronous Case Study of Steam Turbine Generator)

  • 이종훤
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1542-1547
    • /
    • 2012
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. When calculation method of protection settings and logic for protection of generator asynchronization will be recommended, a distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection, this paper describes an improved backup protection coordination scheme using a new logic that will be suggested.

수퍼캐패시터를 이용한 권상부하 시스템의 전력 제어 (Power Control of a Hoist System Using Supercapacitor)

  • 김상민;유현재;설승기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권11호
    • /
    • pp.561-568
    • /
    • 2005
  • This paper proposes a method that distributes the load power and stores the regenerated energy for a hoist-load system using the supercapacitor, an energy storage device. The crane, which is a representative hoist-load system, operates in two modes. The first is the hoist-up mode in which the load container is lifted up: the maximum power is required at the end of acceleration. The second is the hoist-down mode in which the load container is lifted down; the regenerated energy is wasted by the resistor In this paper, the supercapacitor stores the regenerated energy in the hoist-down operation and supplies the peak power demand in the hoist-up operation. The same structure as the commercially available three-phase inverter is proposed as a bidirectional do-dc converter to charge and discharge the supercapacitor. A power control algorithm is proposed to optimize the load sharing between the generator and the supercapacitor. Using the proposed method, it is effected that the generator size can be cut down to one third of the original one; it leads to the reduction of the fuel consumption, noise and air pollution. Simulation and experimental results verify the effectiveness of the Proposed method.