• 제목/요약/키워드: Generative model

검색결과 377건 처리시간 0.023초

BIM 운용 전문가 시험을 통한 ChatGPT의 BIM 분야 전문 지식 수준 평가 (Evaluating ChatGPT's Competency in BIM Related Knowledge via the Korean BIM Expertise Exam)

  • 최지원;구본상;유영수;정유정;함남혁
    • 한국BIM학회 논문집
    • /
    • 제13권3호
    • /
    • pp.21-29
    • /
    • 2023
  • ChatGPT, a chatbot based on GPT large language models, has gained immense popularity among the general public as well as domain professionals. To assess its proficiency in specialized fields, ChatGPT was tested on mainstream exams like the bar exam and medical licensing tests. This study evaluated ChatGPT's ability to answer questions related to Building Information Modeling (BIM) by testing it on Korea's BIM expertise exam, focusing primarily on multiple-choice problems. Both GPT-3.5 and GPT-4 were tested by prompting them to provide the correct answers to three years' worth of exams, totaling 150 questions. The results showed that both versions passed the test with average scores of 68 and 85, respectively. GPT-4 performed particularly well in categories related to 'BIM software' and 'Smart Construction technology'. However, it did not fare well in 'BIM applications'. Both versions were more proficient with short-answer choices than with sentence-length answers. Additionally, GPT-4 struggled with questions related to BIM policies and regulations specific to the Korean industry. Such limitations might be addressed by using tools like LangChain, which allow for feeding domain-specific documents to customize ChatGPT's responses. These advancements are anticipated to enhance ChatGPT's utility as a virtual assistant for BIM education and modeling automation.

머신러닝을 이용한 과학기술 문헌에서의 지역명 식별과 분류방법에 대한 성능 평가 (Performance Assessment of Machine Learning and Deep Learning in Regional Name Identification and Classification in Scientific Documents)

  • 이정우;권오진
    • 한국전자통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.389-396
    • /
    • 2024
  • 생성형 AI는 최근 모든 분야에서 활용되고 있으며, 심층 데이터 분석 분야에서도 전문가를 대체할 수준으로 발전하고 있다. 그러나 과학기술 문헌에서의 지역명 식별은 학습 데이터의 부족과 이에 따른 인공지능 모델을 적용한 사례가 전무한 실정이다. 본 연구는 Web of Science에서 한국 기관 소속 저자들의 주소 데이터를 활용해 지역명을 분류하기 위한 데이터셋을 구축하고, 머신러닝 및 딥러닝 모델의 적용을 실험 및 평가했다. 실험 결과 BERT 모델이 가장 우수한 성능을 보였으며, 광역 분류에서는 정밀도 98.41%, 재현율 98.2%, F1 점수 98.31%를 기록하였다. 시군구 분류에서는 정밀도 91.79%, 재현율 88.32%, F1 점수 89.54%를 달성하였다. 이 결과는 향후 지역 R&D 현황, 지역 간 연구자 이동성, 지역 공동 연구 등 다양한 연구의 기반 데이터로 활용이 가능하다.

한국어 악성 프롬프트 주입 공격을 통한 거대 언어 모델의 유해 표현 유도 (Inducing Harmful Speech in Large Language Models through Korean Malicious Prompt Injection Attacks)

  • 서지민;김진우
    • 정보보호학회논문지
    • /
    • 제34권3호
    • /
    • pp.451-461
    • /
    • 2024
  • 최근 거대 언어 모델을 기반으로 한 다양한 인공지능 챗봇이 출시되고 있다. 챗봇은 대화형 프롬프트를 통해 사용자에게 빠르고 간편하게 정보를 제공할 수 있다는 이점을 가지고 있어서 질의응답, 글쓰기, 프로그래밍 등 다양한 분야에서 활용되고 있다. 그러나 최근에는 챗봇의 취약점을 악용하는 '프롬프트 주입 공격'이 제안되었는데, 이는 챗봇이 기입력된 지시사항을 위반하도록 하는 공격이다. 이와 같은 공격은 거대 언어 모델 내부의 기밀 정보를 유출하거나 또 다른 악성 행위를 유발할 수 있어서 치명적이다. 반면 이들에 대한 취약점 여부가 한국어 프롬프트를 대상으로는 충분히 검증되지 않았다. 따라서 본 논문에서는 널리 사용되는 챗봇인 ChatGPT를 대상으로 악성 한국어 프롬프트를 생성하여 공격을 수행해보고, 이들에 대한 실행 가능성을 분석하고자 한다. 이를 위해 기존에 제안된 프롬프트 주입 공격 기법을 분석하여 악의적인 한국어 프롬프트를 자동으로 생성하는 시스템을 제안하고자 한다. 특히 유해 표현을 유도하는 악성 프롬프트를 중점적으로 생성하였고 이들이 실제 유효함을 보이도록 한다.

Research on the Design of a Deep Learning-Based Automatic Web Page Generation System

  • Jung-Hwan Kim;Young-beom Ko;Jihoon Choi;Hanjin Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.21-30
    • /
    • 2024
  • 본 연구는 폭증하는 디지털 비즈니스의 수요 증가를 감당하기 위하여 AI를 활용한 새로운 제작 방법을 모색하는데 목적이 있다. 이에 딥러닝과 빅데이터를 기반으로 실제 웹페이지 생성 가능 시스템을 구축하고자 하였다. 첫째, 이커머스 웹사이트 기능을 바탕으로 분류체계를 수립하였다. 둘째, 웹페이지 구성요소의 유형을 체계적으로 분류하였다. 셋째, 딥러닝이 적용가능한 웹페이지 자동생성시스템 전체를 설계하였다. 실제 데이터를 학습하여 구현된 딥러닝 모델이 기존 웹사이트를 분석하고 자동생성되도록 재설계 함으로써, 산업에서 바로 사용가능한 방안을 제안했다. 나아가 체계가 부족했던 웹사이트 레이아웃 및 특징에 대한 분류체계를 수립했다는 측면에서 의의가 있다. 이는 향후 생성형 AI 기반의 웹사이트 연구 및 산업 분야에 크게 기여할 수 있을 것이다.

Convolutional neural network of age-related trends digital radiographs of medial clavicle in a Thai population: a preliminary study

  • Phisamon Kengkard;Jirachaya Choovuthayakorn;Chollada Mahakkanukrauh;Nadee Chitapanarux;Pittayarat Intasuwan;Yanumart Malatong;Apichat Sinthubua;Patison Palee;Sakarat Na Lampang;Pasuk Mahakkanukrauh
    • Anatomy and Cell Biology
    • /
    • 제56권1호
    • /
    • pp.86-93
    • /
    • 2023
  • Age at death estimation has always been a crucial yet challenging part of identification process in forensic field. The use of human skeletons have long been explored using the principle of macro and micro-architecture change in correlation with increasing age. The clavicle is recommended as the best candidate for accurate age estimation because of its accessibility, time to maturation and minimal effect from weight. Our study applies pre-trained convolutional neural network in order to achieve the most accurate and cost effective age estimation model using clavicular bone. The total of 988 clavicles of Thai population with known age and sex were radiographed using Kodak 9000 Extra-oral Imaging System. The radiographs then went through preprocessing protocol which include region of interest selection and quality assessment. Additional samples were generated using generative adversarial network. The total clavicular images used in this study were 3,999 which were then separated into training and test set, and the test set were subsequently categorized into 7 age groups. GoogLeNet was modified at two layers and fine tuned the parameters. The highest validation accuracy was 89.02% but the test set achieved only 30% accuracy. Our results show that the use of medial clavicular radiographs has a potential in the field of age at death estimation, thus, further study is recommended.

Overcoming the Challenges in the Development and Implementation of Artificial Intelligence in Radiology: A Comprehensive Review of Solutions Beyond Supervised Learning

  • Gil-Sun Hong;Miso Jang;Sunggu Kyung;Kyungjin Cho;Jiheon Jeong;Grace Yoojin Lee;Keewon Shin;Ki Duk Kim;Seung Min Ryu;Joon Beom Seo;Sang Min Lee;Namkug Kim
    • Korean Journal of Radiology
    • /
    • 제24권11호
    • /
    • pp.1061-1080
    • /
    • 2023
  • Artificial intelligence (AI) in radiology is a rapidly developing field with several prospective clinical studies demonstrating its benefits in clinical practice. In 2022, the Korean Society of Radiology held a forum to discuss the challenges and drawbacks in AI development and implementation. Various barriers hinder the successful application and widespread adoption of AI in radiology, such as limited annotated data, data privacy and security, data heterogeneity, imbalanced data, model interpretability, overfitting, and integration with clinical workflows. In this review, some of the various possible solutions to these challenges are presented and discussed; these include training with longitudinal and multimodal datasets, dense training with multitask learning and multimodal learning, self-supervised contrastive learning, various image modifications and syntheses using generative models, explainable AI, causal learning, federated learning with large data models, and digital twins.

Multi-dimensional Contextual Conditions-driven Mutually Exclusive Learning for Explainable AI in Decision-Making

  • Hyun Jung Lee
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.7-21
    • /
    • 2024
  • There are various machine learning techniques such as Reinforcement Learning, Deep Learning, Neural Network Learning, and so on. In recent, Large Language Models (LLMs) are popularly used for Generative AI based on Reinforcement Learning. It makes decisions with the most optimal rewards through the fine tuning process in a particular situation. Unfortunately, LLMs can not provide any explanation for how they reach the goal because the training is based on learning of black-box AI. Reinforcement Learning as black-box AI is based on graph-evolving structure for deriving enhanced solution through adjustment by human feedback or reinforced data. In this research, for mutually exclusive decision-making, Mutually Exclusive Learning (MEL) is proposed to provide explanations of the chosen goals that are achieved by a decision on both ends with specified conditions. In MEL, decision-making process is based on the tree-based structure that can provide processes of pruning branches that are used as explanations of how to achieve the goals. The goal can be reached by trade-off among mutually exclusive alternatives according to the specific contextual conditions. Therefore, the tree-based structure is adopted to provide feasible solutions with the explanations based on the pruning branches. The sequence of pruning processes can be used to provide the explanations of the inferences and ways to reach the goals, as Explainable AI (XAI). The learning process is based on the pruning branches according to the multi-dimensional contextual conditions. To deep-dive the search, they are composed of time window to determine the temporal perspective, depth of phases for lookahead and decision criteria to prune branches. The goal depends on the policy of the pruning branches, which can be dynamically changed by configured situation with the specific multi-dimensional contextual conditions at a particular moment. The explanation is represented by the chosen episode among the decision alternatives according to configured situations. In this research, MEL adopts the tree-based learning model to provide explanation for the goal derived with specific conditions. Therefore, as an example of mutually exclusive problems, employment process is proposed to demonstrate the decision-making process of how to reach the goal and explanation by the pruning branches. Finally, further study is discussed to verify the effectiveness of MEL with experiments.

빅카인즈를 활용한 GenAI(생성형 인공지능) 기술 동향 분석: ChatGPT 등장과 스타트업 영향 평가 (GenAI(Generative Artificial Intelligence) Technology Trend Analysis Using Bigkinds: ChatGPT Emergence and Startup Impact Assessment)

  • 이현주;성창수;전병훈
    • 벤처창업연구
    • /
    • 제18권4호
    • /
    • pp.65-76
    • /
    • 2023
  • 기술 창업 및 스타트업 분야에서는 인공지능(AI)의 발전이 사업 모델 혁신의 핵심 주제로 부상하였다. 이를 통해 벤처기업들은 경쟁력 확보를 위해 AI를 중심으로 다양한 노력을 기울이고 있다. 본 연구는 GenAI 기술의 발전과 스타트업 생태계 간의 관계를 국내 뉴스 기사를 분석하여, 기술 창업 분야의 동향을 파악하는 것을 목적으로 하였다. 본 연구는 빅카인즈(BIG Kinds)를 활용하여 1990년부터 2023년 8월 10일까지의 국내 뉴스 기사에서 ChatGPT의 등장 전후를 중심으로 GenAI 관련 뉴스 기사, 주요 이슈 및 트렌드의 변화를 조사하였으며, 네트워크 분석 및 키워드 시각화를 통해 관련성을 시각화하였다. 연구결과, 2017년부터 2023년까지 GenAI에 대한 언급이 기사 내에서 점차 증가하였다. 특히, OpenAI의 GPT-3.5를 기반으로 한 ChatGPT 서비스가 주요 이슈로 부각 되었는데, 이 서비스는 OpenAI의 DALL-E, Google의 MusicLM, VoyagerX의 Vrew 등과 같은 언어 모델 기반 GenAI 기술의 대중화를 시사하였다. 이로써 생성형 인공지능은 다양한 분야에서의 유용성을 입증하며, ChatGPT 출시 이후 국내 기업들의 한국어 언어 모델 개발 활동이 활발히 이루어지고 있는 것으로 확인되었다. 리튼 테크놀로지스와 같은 스타트업들도 GenAI를 활용하여 기술 창업 분야에서의 영역을 확장하고 있다. 본 연구에서는 GenAI 기술과 스타트업 창업 활동 간의 연관성을 확인하였으며, 이는 혁신적인 비즈니스 전략의 구축 지원을 시사하며 GenAI 기술의 발전과 스타트업 생태계의 성장을 지속해서 형성할 것으로 전망된다. 더 나아가 국제적 동향 및 다양한 분석 방법의 활용, 실제 현장에서의 GenAI 응용 가능성을 모색하는 연구가 요구 된다. 이러한 노력은 GenAI 기술의 발전과 스타트업 생태계의 성장 발전에 이바지할 것으로 기대된다.

  • PDF

대한해협에서의 지진해일 전파특성과 지진해일고의 확률적 기술 (Characteristics of Tsunami Propagation through the Korean Straits and Statistical Description of Tsunami Wave Height)

  • 조용준;이재일
    • 한국해안해양공학회지
    • /
    • 제18권4호
    • /
    • pp.269-282
    • /
    • 2006
  • 본 연구에서는 강건한 지진해일모형인 비선형 천수 방정식에 기초하여 대한해협을 통과하는 지진해일의 전파특성에 관해 연구하였다. 지진해일은 쓰시마-고토 단층대에서 우리나라에 영향을 미친 지진 중 비교적 출현 빈도가 높은 리히터 규모 7.5의 지진에 의해 발생하는 것으로 가정하였다. 수치모의 결과 지진해일의 선도파랑이 대한해협을 횡단하는데 60분 정도가 소요되며 이는 지진해일 경보 시스템이 대피시간의 부족으로 인해 그 기능을 발휘하지 못할 수도 있음을 시사한다. 또한 전 쓰시마-고토 단층대에서 동일한 생기빈도를 가지는 지진사상에 대해 Kajiura(1963)의 동수역학 모형과 간단한 지진학적 모형을 활용한 지진해일 재해 모형이 제시되었다. 제시된 지진해일 재해 모형을 활용하여 우리나라 남해안 마산, 여수, 통영, 고흥 전면 해역에서의 각 수위별 지진해일고의 초과확률이 제시되었다. 이와 더불어 본고에서 제시한 지진해일 재해모형의 검증은 관측자료가 비교적 풍부한 동해 동연 오쿠시리 해령에서 1993년에 발생한 북해도 남서외해 지진해일과 Akita and Fukaura 두 곳에서 관측된 수위자료를 대상으로 수행되어 매우 고무적인 결과를 얻었다. 이 연구 결과들은 지진해일의 위험에 대한 연안방계 시스템의 설계기준의 수정을 위한 가치 있는 자료들로 활용될 수 있으리라 판단된다.

가상 휴먼 강사의 인간 유사도가 교육 콘텐츠 만족감에 미치는 영향: 체험경제이론을 중심으로 (The Effect of Virtual Human Lecturer's Human Likeness on Educational Content Satisfaction: Focused on the Theory of Experiential Economy)

  • 공리;배수진;권오병
    • 한국콘텐츠학회논문지
    • /
    • 제22권7호
    • /
    • pp.524-539
    • /
    • 2022
  • 생성형 인공지능 기술의 발달로 가상 휴먼 제작이 가능하며, 텍스트 정보만으로도 가상 휴먼에 의한 강의 동영상을 제작할 수 있다. 이로써 가상 휴먼이 교육 콘텐츠의 효율적 작성과 수강자들의 재미와 만족감을 유도할 것으로 기대하고 있다. 그러나 아직 가상 휴먼 기술이 수강자들의 만족감에 이르도록 하는 과정을 본격적으로 실증한 연구는 거의 존재하지 않는다. 따라서, 본 연구의 목적은 가상 휴먼의 가장 주된 특징인 인간 유사도가 인간의 체험 및 만족감에 영향을 미치는지를 실증 분석하는 것이다. 특히 언캐니밸리 이론의 인간 유사도를 시각 및 언어 차원의 유사도로 분류하였으며, 체험경제모델을 이론적 근거로 하여 만족감에 도달하는 과정을 부분 최소 제곱 구조방정식 모형(PLS-SEM)으로 분석해 가설 검정하였다. 본 연구의 대상은 중국의 전문 조사 기관의 직장인 패널을 대상으로 온라인으로 수행했다. 분석 결과 가상 휴먼의 시각적 차원의 인간 유사도 및 언어 차원의 인간 유사도는 모두 체험경제 요소(교육, 오락, 심미, 일탈)에 긍정적인 영향을 주었으며, 이들 체험경제 요소는 모두 만족감에 유의한 영향을 주었다. 본 연구의 결과를 근거로 가상 휴먼에 의한 교육 콘텐츠 설계 시의 유의할 점 등 시사점을 제시하였다.