• 제목/요약/키워드: Generative model

검색결과 377건 처리시간 0.028초

대학입시 수능시험을 평가 도구로 적용한 ChatGPT의 학업 능력 분석 (Analysis of the scholastic capability of ChatGPT utilizing the Korean College Scholastic Ability Test)

  • 문혜림;김진혁;한경희;김시호
    • Journal of Platform Technology
    • /
    • 제11권5호
    • /
    • pp.72-83
    • /
    • 2023
  • ChatGPT는 2022년 하반기 상업적 서비스 시작 이후에 미국 변호사 자격시험과 의사 자격시험을 포함한 전문직 시험에서 성공적인 결과를 보였고, 전문직 영역에서 주관식 시험의 통과 능력을 입증하였으나, 교육 분야의 영역에서는 ChatGPT의 논리적 추론과 문제 풀이 등 학업 능력의 평가에 대해서도 새로운 실험과 분석이 필요하다. 본 연구에서는 한국 대학수학능력 시험 문제의 국어, 영어, 수학 세 주요 교과목을 활용하여 ChatGPT의 학업 능력을 평가하였다. 실험 결과에서는 ChatGPT는 영어 영역에서는 상대적으로 높은 69%의 정답률을 보이지만, 국어와 수학 영역에서는 각각 34%와 19%의 비교적 낮은 정답률을 기록하였다. 문장의 이해와 논리적 추론 능력에 관련된 수능 국어와 한국어 능력 시험 (TOPIK II) 및 수능 영어 시험의 결과 분석을 통하여, ChatGPT의 학업능력과 취약점의 원인을 분석하였다. ChatGPT는 대화형 언어 모델로 개발되었기 때문에 일반적인 국어, 영어, 수학 문제를 이해하고 응답하는 능력은 있지만, 난도가 높은 논리적 추론 능력과 수학 문제 풀이 능력에서는 매우 취약한 것으로 판단되었다. 본 연구는 생성형 인공지능의 성능 평가를 위한 간편하면서도 정확도가 높으며 효과적인 평가 기준을 마련하는 데에 큰 도움이 될 것으로 기대한다.

  • PDF

AI 기반 이미지 생성 기술의 농업 적용 가능성 (Agricultural Applicability of AI based Image Generation)

  • 윤승리;이예영;정은규;안태인
    • 생물환경조절학회지
    • /
    • 제33권2호
    • /
    • pp.120-128
    • /
    • 2024
  • 2022년 ChatGPT 출시 이후, 생성형 AI 산업은 엄청난 규모로 성장하였으며, 인지 작업에 혁신을 가져올 것으로 기대되고 있다. 특히 AI 기반 이미지 생성 기술은 현재 디지털 세계의 핵심적인 변화를 주도하고 있다. 본 연구는 대표적인 AI 이미지 생성 도구인 미드저니, 스테이블 디퓨전, 그리고 파이어플라이의 기술적 원리를 분석하고, 이미지 생성 결과를 비교함으로써 그 유용성을 평가하였다. 실험 결과, 이 AI 도구들은 대표 시설원예 작물인 토마토, 딸기, 파프리카, 오이의 과실 이미지를 실제와 유사하게 재현하였다. 특히 파이어플라이는 실제 온실 재배 작물 이미지를 매우 사실적으로 묘사하는 능력을 보여주었다. 그러나 모든 도구들은 작물이 자라는 온실의 환경적 맥락을 완전히 반영하는 데에 있어서 다소 한계를 보였다. 프롬프트 개선 및 레퍼런스 이미지를 활용하여 딸기과실 이미지와 시설 딸기재배 시스템을 보다 정교하게 생성하는 과정도 포함되었으며, 이러한 접근은 AI 이미지 생성 기술의 세밀한 조정이 가능함을 보여준다. 오이 과실 이미지 생성능력을 비교한 결과, AI 생성 도구들은 실제 이미지와 매우 유사한 이미지를 생성해 냄으로써 이미지 생성 점수(CLIP score)에 있어서 통계적 차이를 보이지 않았다. 본 연구는 AI 기반 이미지 생성 이미지 기술이 농업 분야에 활용될 수 있는 방안을 모색하며, 생성형 AI의 농업에 대한 적용을 긍정적으로 전망한다.

한국형 멀티모달 몽타주 앱을 위한 생성형 AI 연구 (Research on Generative AI for Korean Multi-Modal Montage App)

  • 임정현;차경애;고재필;홍원기
    • 서비스연구
    • /
    • 제14권1호
    • /
    • pp.13-26
    • /
    • 2024
  • 멀티모달 (multi-modal) 생성이란 텍스트, 이미지, 오디오 등 다양한 정보를 기반으로 결과를 도출하는 작업을 말한다. AI 기술의 비약적인 발전으로 인해 여러 가지 유형의 데이터를 종합적으로 처리해 결과를 도출하는 멀티모달 기반 시스템 또한 다양해지는 추세이다. 본 논문은 음성과 텍스트 인식을 활용하여 인물을 묘사하면, 몽타주 이미지를 생성하는 AI 시스템의 개발 내용을 소개한다. 기존의 몽타주 생성 기술은 서양인들의 외형을 기준으로 이루어진 반면, 본 논문에서 개발한 몽타주 생성 시스템은 한국인의 안면 특징을 바탕으로 모델을 학습한다. 따라서, 한국어에 특화된 음성과 텍스트의 멀티모달을 기반으로 보다 정확하고 효과적인 한국형 몽타주 이미지를 만들어낼 수 있다. 개발된 몽타주 생성 앱은 몽타주 초안으로 충분히 활용 가능하기 때문에 기존의 몽타주 제작 인력의 수작업을 획기적으로 줄여줄 수 있다. 이를 위해 한국지능정보사회진흥원의 AI-Hub에서 제공하는 페르소나 기반 가상 인물 몽타주 데이터를 활용하였다. AI-Hub는 AI 기술 및 서비스 개발에 필요한 인공지능 학습용 데이터를 구축하여 원스톱 제공을 목적으로 한 AI 통합 플랫폼이다. 이미지 생성 시스템은 고해상도 이미지를 생성하는데 사용하는 딥러닝 모델인 VQGAN과 한국어 기반 영상생성 모델인 KoDALLE 모델을 사용하여 구현하였다. 학습된 AI 모델은 음성과 텍스트를 이용해 묘사한 내용과 매우 유사한 얼굴의 몽타주 이미지가 생성됨을 확인할 수 있다. 개발된 몽타주 생성 앱의 실용성 검증을 위해 10명의 테스터가 사용한 결과 70% 이상이 만족한다는 응답을 보였다. 몽타주 생성 앱은 범죄자 검거 등 얼굴의 특징을 묘사하여 이미지화하는 여러 분야에서 다양하게 사용될 수 있을 것이다.

벡터 양자화 변분 오토인코더 기반의 폴리 음향 생성 모델을 위한 잔여 벡터 양자화 적용 연구 (A study on the application of residual vector quantization for vector quantized-variational autoencoder-based foley sound generation model)

  • 이석진
    • 한국음향학회지
    • /
    • 제43권2호
    • /
    • pp.243-252
    • /
    • 2024
  • 최근에 연구되기 시작한 폴리(Foley) 음향 생성 모델 중 벡터 양자화 변분 오토인코더(Vector Quantized-Variational AutoEncoder, VQ-VAE) 구조와 Pixelsnail 등 생성모델을 활용한 생성 기법은 중요한 연구대상 중 하나이다. 한편, 딥러닝 기반의 음향 신호의 압축/복원 분야에서는 기존의 VQ-VAE 구조에 비해 잔여 벡터 양자화 기술이 더 적합한 것으로 보고되고 있으며, 따라서 본 논문에서는 폴리 음향 생성 분야에서도 잔여 벡터 양자화 기술이 효과적으로 적용될 수 있을지 연구하고자 한다. 이를 위하여 본 논문에서는 기존의 VQ-VAE 기반의 폴리 음향 생성 모델에 잔여 벡터 양자화 기술을 적용하되, Pixelsnail 등 기존의 다른 모델과 호환이 가능하고 연산 자원의 소모를 늘리지 않는 모델을 고안하여 그 효과를 확인하고자 하였다. 효과를 검증하기 위하여 DCASE2023 Task7의 데이터를 활용하여 실험을 진행하였으며, 그 결과 평균적으로 0.3 가량의 Fréchet audio distance 의 향상을 보이는 것을 확인하였다. 다만 그 성능 향상의 정도가 제한적이었으며, 이는 연산 자원의 소모를 유지하기 위하여 시간-주파수축의 분해능이 저하된 영향으로 판단된다.

2007 개정 7학년 과학 교과서에 나타난 지구과학의 동기유발 요소 분석 (An Analysis of Motivation in the Earth Science part of the 7th Grade Textbooks)

  • 김주현;한신;정진우
    • 과학교육연구지
    • /
    • 제37권1호
    • /
    • pp.11-22
    • /
    • 2013
  • 동기는 학생들의 흥미를 유발시키고 학습을 지속시켜 줄 수 있는 가장 큰 원동력이 며, 교과서에서 이러한 학습 동기를 어떠한 방법으로 유발시키고 있는지를 살펴보는 일은 유의미한 분석이 될 것이다. 본 연구는 2007 개정 7학년 8종 교과서가 어떠한 유형들로 학생들의 동기유발을 촉진시키고 있는지를 Keller의 ARCS 모형을 통해 적용하여 보았다. 본 연구의 결과는 다음과 같다. 첫째, 2007 개정 8종 교과서별로 동기유발 요소를 분석한 결과 각각의 교과서에 A1~R3까지의 분석 요소들을 영역별로 다양하게 사용하였다. 둘째, 교과서의 영역별로는 본시 학습 부분에서 가장 많은 동기유발 요소들이 사용되었고 그 다음으로는 도입부, 단원 마무리 순으로 동기유발 요소들이 사용 되었다. 셋째, 교과서를 Keller의 ARCS 모형의 동기유발 요소별로 분석한 결과 주의집중(A) 요소에서는 교과서의 모든 영역에서 A1(지각적 각성) 전략과 관련성(R) 요소에서는 R3(친밀성) 전략을 가장 많이 사용하였다.

  • PDF

GENEPLORE 창의적 사고 과정 모델과 지식발달론에 기초한 영재아 과학-기술-사회(STS) 창의력 교육 프로그램 개발 (The Educational Program Development of Creativity in Science-Technology-Society for Gifted and Talented Children based on GENEPLORE Creative Thinking Process and Theory of Knowledge Development)

  • 전명남
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2003년도 춘계종합학술대회논문집
    • /
    • pp.74-87
    • /
    • 2003
  • 과학-기술-사회에서의 창의력 교육은 창의적 사고의 과정과 과학적 지식 발달 이론에 근거하여 기존의 창의력 개발 교육보다 진일보한 방식으로 이루어져야 할 것이며 영재아를 위한 창의력 개발 교육의 구체적인 방안과 실천이 요구되고 있다. Wallas, Weisberg 등의 의해 창의적 사고 과정에 대한 논의가 이루어져 왔으나 최근 Finke 등에 의해 창의적 사고과정으로서 ‘생성단계’와 ‘탐구단계’로 구성된 GENEPLORE 사고 과정이 제안되었다. 또한, 창의력은 기반 지식의 영향으로 발휘된다는 연구들이 대두되어 왔음에도 불구하고, 지식발달론에 근거한 창의력 교육 문제는 논의 수준에 그치고 있다. Piaget(1977), Gallagher(1981) 등은 지식발달이 경험적 추상과 반성적 추상의 과정에 기초하여 이루어지고 있음을 이론적 및 실증적으로 규명해 낸 바 있으며 최근 인지과학 분야의 연구성과는 지식발달의 과정을 다루는데 초점 맞추어지고 있다. 이 연구에서는 컴퓨터, 네트웍, 바이오텍, 로봇, E-비즈니스, E-교육, E-건강, 나노텍, 오락 등의 과학-기술-사회 주제를 중심으로 영재아를 위한 ‘개인과 창의적 사고 방법 및 사횔 및 과학기술을 통합적으로 다루는 창의적 사고 모형을 개발’하였으며, 구체적인 프로그램 내용구성을 소개하였다.

  • PDF

의견 어구 추출을 위한 생성 모델과 분류 모델을 결합한 부분 지도 학습 방법 (Semi-Supervised Learning for Sentiment Phrase Extraction by Combining Generative Model and Discriminative Model)

  • 남상협;나승훈;이예하;이용훈;김준기;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.268-273
    • /
    • 2008
  • 의견(Opinion) 분석은 도전적인 분야로 언어 자원 구축, 문서의 Sentiment 분류, 문장 내의 의견 어구 추출 등의 다양한 문제를 다룬다. 이 중 의견 어구 추출문제는 단순히 문장이나 문서 단위로 분류하는 수준을 뛰어 넘는 문장 내 의견 어구를 추출하는 문제로 최근 많은 관심을 받고 있는 연구 주제이다. 그러나 의견 어구 추출에 대한 기존 연구는 문장 내 의견 어구부분이 태깅(tagging)된 학습 데이터와 의견 어휘 자원을 이용한 지도(Supervised)학습을 이용한 접근이 대부분으로 실제 적용 상의 한계를 갖는다. 본 논문은 문장 내 의견 어구 부분이 태깅된 학습 데이터와 의견 어휘 자원이 없는 환경에서도 문장단위의 극성 정보를 이용하여 의견 어구를 추출하는 부분 지도(Semi-Supervised)학습 장법을 제안한다. 본 논문의 방법은 Baseline에 비하여 정확률(Precision)은 33%, F-Measure는 14% 가량 높은 성능을 냈다.

  • PDF

적대적 생성망을 이용한 부동산 시계열 데이터 생성 방안 (A Methodology for Realty Time-series Generation Using Generative Adversarial Network)

  • 유재필;한창훈;신현준
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.9-17
    • /
    • 2021
  • 최근 빅데이터 분석, 인공지능, 기계학습 등의 발전으로 인해서 데이터를 과학적으로 분석하는 기술이 발전하고 있으며 이는 의사결정 문제를 최적으로 해결해주고 있다. 그러나 특정 분야의 경우에는 데이터의 양이 부족해서 과학적 방식에 적용하는 것이 어렵다. 예컨대 부동산과 같은 데이터는 데이터 발표 시점이 최근이거나 비 유동성 자산이다 보니 발표 주기가 긴 경우가 많다. 따라서 본 연구에서는 이런 문제점을 극복하기 위해서 TimeGAN 모형을 통해 기존의 시계열의 확장 가능성에 대해서 연구하고자 한다. 이를 위해 부동산과 관련된 총 45개의 시계열을 데이터 셋에 맞게 2012년부터 2021년까지 주 단위로 데이터를 수집하고 시계열 간의 상관관계를 고려해서 총 15개의 최종 시계열을 선정한다. 15개의 시계열에 대해서 TimeGAN 모형을 통해 데이터 확장을한 결과, PCA 및 T-SNE 시각화 알고리즘을 통해 실제 데이터와 확장 데이터 간의 통계적 분포가 유사하다는 것을 확인할 수 있었다. 따라서 본 논문을 통해서 데이터의 과적합 또는 과소적합이라는 한계점을 극복할 수 있는 다양한 실험이 연구되기를 기대한다.

딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석 (Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm)

  • 김영희;장관종
    • 융합정보논문지
    • /
    • 제11권3호
    • /
    • pp.7-13
    • /
    • 2021
  • 본 연구는 딥러닝(Deep Learning) 알고리즘 GAN 모델을 기반으로 초미세먼지(PM2.5) 인공지능 예측시스템을 개발한다. 실험 데이터는 시계열 축으로 생성된 온도, 습도, 풍속, 기압의 기상변화와 SO2, CO, O3, NO2, PM10와 같은 대기오염물질 농도와 밀접한 관련이 있다. 데이터 특성상, 현재시간 농도가 이전시간 농도에 영향을 받기 때문에 반복지도학습(Recursive Supervised Learning) 예측 모델을 적용하였다. 기존 모델인 CNN, LSTM의 정확도(Accuracy)를 비교분석을 위해 관측값(Observation Value)과 예측값(Prediction Value)간의 차이를 분석하고 시각화했다. 성능분석 결과 제안하는 GAN이 LSTM 대비 평가항목 RMSE, MAPE, IOA에서 각각 15.8%, 10.9%, 5.5%로 향상된 것을 확인하였다.

Deep survey using deep learning: generative adversarial network

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.78.1-78.1
    • /
    • 2019
  • There are a huge number of faint objects that have not been observed due to the lack of large and deep surveys. In this study, we demonstrate that a deep learning approach can produce a better quality deep image from a single pass imaging so that could be an alternative of conventional image stacking technique or the expensive large and deep surveys. Using data from the Sloan Digital Sky Survey (SDSS) stripe 82 which provide repeatedly scanned imaging data, a training data set is constructed: g-, r-, and i-band images of single pass data as an input and r-band co-added image as a target. Out of 151 SDSS fields that have been repeatedly scanned 34 times, 120 fields were used for training and 31 fields for validation. The size of a frame selected for the training is 1k by 1k pixel scale. To avoid possible problems caused by the small number of training sets, frames are randomly selected within that field each iteration of training. Every 5000 iterations of training, the performance were evaluated with RMSE, peak signal-to-noise ratio which is given on logarithmic scale, structural symmetry index (SSIM) and difference in SSIM. We continued the training until a GAN model with the best performance is found. We apply the best GAN-model to NGC0941 located in SDSS stripe 82. By comparing the radial surface brightness and photometry error of images, we found the possibility that this technique could generate a deep image with statistics close to the stacked image from a single-pass image.

  • PDF