• Title/Summary/Keyword: Generative Models

Search Result 180, Processing Time 0.031 seconds

Waste Classification by Fine-Tuning Pre-trained CNN and GAN

  • Alsabei, Amani;Alsayed, Ashwaq;Alzahrani, Manar;Al-Shareef, Sarah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.65-70
    • /
    • 2021
  • Waste accumulation is becoming a significant challenge in most urban areas and if it continues unchecked, is poised to have severe repercussions on our environment and health. The massive industrialisation in our cities has been followed by a commensurate waste creation that has become a bottleneck for even waste management systems. While recycling is a viable solution for waste management, it can be daunting to classify waste material for recycling accurately. In this study, transfer learning models were proposed to automatically classify wastes based on six materials (cardboard, glass, metal, paper, plastic, and trash). The tested pre-trained models were ResNet50, VGG16, InceptionV3, and Xception. Data augmentation was done using a Generative Adversarial Network (GAN) with various image generation percentages. It was found that models based on Xception and VGG16 were more robust. In contrast, models based on ResNet50 and InceptionV3 were sensitive to the added machine-generated images as the accuracy degrades significantly compared to training with no artificial data.

A Study on Performance Evaluation in Metal Cuttin System (금속 절삭가공 시스템의 성능평가에 관한 연구)

  • 황규완;김순경;황흥석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.689-693
    • /
    • 1996
  • This paper was performed on the automatic selection of cutting condition on multispindle machine. the several mathematical relationships were formulated for simulataneous selection of machining parameters and tool changing scheme. In this research we used two step generative approach; step 1 is mathematical modeling for the selection of optimal cutting conditions and the other is GMDH-TYPE modeling to find prediction equation of system performance. thus in this paper, mathematical machining models combined with a heuristic GMDH-TYPE modeling to estimate the system performance, these models are developed computer programs for practical application and it was shown that the proposed approach has a good potential and offers a valuable tools to performance evaluation for metal cutting system.

  • PDF

Language Modeling Approaches to Information Retrieval

  • Banerjee, Protima;Han, Hyo-Il
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.3
    • /
    • pp.143-164
    • /
    • 2009
  • This article surveys recent research in the area of language modeling (sometimes called statistical language modeling) approaches to information retrieval. Language modeling is a formal probabilistic retrieval framework with roots in speech recognition and natural language processing. The underlying assumption of language modeling is that human language generation is a random process; the goal is to model that process via a generative statistical model. In this article, we discuss current research in the application of language modeling to information retrieval, the role of semantics in the language modeling framework, cluster-based language models, use of language modeling for XML retrieval and future trends.

A Study on Auction-Inspired Multi-GAN Training (경매 메커니즘을 이용한 다중 적대적 생성 신경망 학습에 관한 연구)

  • Joo Yong Shim;Jean Seong Bjorn Choe;Jong-Kook Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.527-529
    • /
    • 2023
  • Generative Adversarial Networks (GANs) models have developed rapidly due to the emergence of various variation models and their wide applications. Despite many recent developments in GANs, mode collapse, and instability are still unresolved issues. To address these problems, we focused on the fact that a single GANs model itself cannot realize local failure during the training phase without external standards. This paper introduces a novel training process involving multiple GANs, inspired by auction mechanisms. During the training, auxiliary performance metrics for each GANs are determined by the others through the process of various auction methods.

Methodology of Applying Randomness for Boosting Image Classification Performance (이미지 분류 성능 향상을 위한 무작위성 적용 방법론)

  • Juyong Park;Yuri Jeon;Miyeong Kim;Jeongmin Lee;Yoonsuk Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.5
    • /
    • pp.251-257
    • /
    • 2024
  • Securing various types of training data in image Classification is important for improving performance. However, increasing the amount of original data is cost-limited, so data diversity can be secured by transforming images through data augmentation. Recently, a new deep learning approach using Generative AI models like GAN or Diffusion Based models has emerged in the Data Augmentation task, and reinforcement learning-based methods such as AutoAugment and Deep AutoAugment using existing basic Augmentation techniques are also showing good performance. However, this method has the disadvantage of having a complicated optimization procedure and high computational cost. This paper conducted various experiments with existing methods Cutmix, Mixup, RandAugment. By combining these techniques appropriately, we obtained higher performance than existing method without much effort. Additionally, our ablation experiment shows that additional hyper-parameter adjustments are needed for the basic augmentation types when we use RandAugment. Our code is available at https://github.com/lliee1/Randomness_Analysis.

Generative optical flow based abnormal object detection method using a spatio-temporal translation network

  • Lim, Hyunseok;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2021
  • An abnormal object refers to a person, an object, or a mechanical device that performs abnormal and unusual behavior and needs observation or supervision. In order to detect this through artificial intelligence algorithm without continuous human intervention, a method of observing the specificity of temporal features using optical flow technique is widely used. In this study, an abnormal situation is identified by learning an algorithm that translates an input image frame to an optical flow image using a Generative Adversarial Network (GAN). In particular, we propose a technique that improves the pre-processing process to exclude unnecessary outliers and the post-processing process to increase the accuracy of identification in the test dataset after learning to improve the performance of the model's abnormal behavior identification. UCSD Pedestrian and UMN Unusual Crowd Activity were used as training datasets to detect abnormal behavior. For the proposed method, the frame-level AUC 0.9450 and EER 0.1317 were shown in the UCSD Ped2 dataset, which shows performance improvement compared to the models in the previous studies.

Multidimensional data generation of water distribution systems using adversarially trained autoencoder (적대적 학습 기반 오토인코더(ATAE)를 이용한 다차원 상수도관망 데이터 생성)

  • Kim, Sehyeong;Jun, Sanghoon;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.439-449
    • /
    • 2023
  • Recent advancements in data measuring technology have facilitated the installation of various sensors, such as pressure meters and flow meters, to effectively assess the real-time conditions of water distribution systems (WDSs). However, as cities expand extensively, the factors that impact the reliability of measurements have become increasingly diverse. In particular, demand data, one of the most significant hydraulic variable in WDS, is challenging to be measured directly and is prone to missing values, making the development of accurate data generation models more important. Therefore, this paper proposes an adversarially trained autoencoder (ATAE) model based on generative deep learning techniques to accurately estimate demand data in WDSs. The proposed model utilizes two neural networks: a generative network and a discriminative network. The generative network generates demand data using the information provided from the measured pressure data, while the discriminative network evaluates the generated demand outputs and provides feedback to the generator to learn the distinctive features of the data. To validate its performance, the ATAE model is applied to a real distribution system in Austin, Texas, USA. The study analyzes the impact of data uncertainty by calculating the accuracy of ATAE's prediction results for varying levels of uncertainty in the demand and the pressure time series data. Additionally, the model's performance is evaluated by comparing the results for different data collection periods (low, average, and high demand hours) to assess its ability to generate demand data based on water consumption levels.

Fraud Detection System Model Using Generative Adversarial Networks and Deep Learning (생성적 적대 신경망과 딥러닝을 활용한 이상거래탐지 시스템 모형)

  • Ye Won Kim;Ye Lim Yu;Hong Yong Choi
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.59-72
    • /
    • 2020
  • Artificial Intelligence is establishing itself as a familiar tool from an intractable concept. In this trend, financial sector is also looking to improve the problem of existing system which includes Fraud Detection System (FDS). It is being difficult to detect sophisticated cyber financial fraud using original rule-based FDS. This is because diversification of payment environment and increasing number of electronic financial transactions has been emerged. In order to overcome present FDS, this paper suggests 3 types of artificial intelligence models, Generative Adversarial Network (GAN), Deep Neural Network (DNN), and Convolutional Neural Network (CNN). GAN proves how data imbalance problem can be developed while DNN and CNN show how abnormal financial trading patterns can be precisely detected. In conclusion, among the experiments on this paper, WGAN has the highest improvement effects on data imbalance problem. DNN model reflects more effects on fraud classification comparatively.

Learning Graphical Models for DNA Chip Data Mining

  • Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.59-60
    • /
    • 2000
  • The past few years have seen a dramatic increase in gene expression data on the basis of DNA microarrays or DNA chips. Going beyond a generic view on the genome, microarray data are able to distinguish between gene populations in different tissues of the same organism and in different states of cells belonging to the same tissue. This affords a cell-wide view of the metabolic and regulatory processes under different conditions, building an effective basis for new diagnoses and therapies of diseases. In this talk we present machine learning techniques for effective mining of DNA microarray data. A brief introduction to the research field of machine learning from the computer science and artificial intelligence point of view is followed by a review of recently-developed learning algorithms applied to the analysis of DNA chip gene expression data. Emphasis is put on graphical models, such as Bayesian networks, latent variable models, and generative topographic mapping. Finally, we report on our own results of applying these learning methods to two important problems: the identification of cell cycle-regulated genes and the discovery of cancer classes by gene expression monitoring. The data sets are provided by the competition CAMDA-2000, the Critical Assessment of Techniques for Microarray Data Mining.

  • PDF

A Study on the Health Index Based on Degradation Patterns in Time Series Data Using ProphetNet Model (ProphetNet 모델을 활용한 시계열 데이터의 열화 패턴 기반 Health Index 연구)

  • Sun-Ju Won;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.123-138
    • /
    • 2023
  • The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.