• Title/Summary/Keyword: Generative Model

Search Result 371, Processing Time 0.031 seconds

StarGAN-Based Detection and Purification Studies to Defend against Adversarial Attacks (적대적 공격을 방어하기 위한 StarGAN 기반의 탐지 및 정화 연구)

  • Sungjune Park;Gwonsang Ryu;Daeseon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.449-458
    • /
    • 2023
  • Artificial Intelligence is providing convenience in various fields using big data and deep learning technologies. However, deep learning technology is highly vulnerable to adversarial examples, which can cause misclassification of classification models. This study proposes a method to detect and purification various adversarial attacks using StarGAN. The proposed method trains a StarGAN model with added Categorical Entropy loss using adversarial examples generated by various attack methods to enable the Discriminator to detect adversarial examples and the Generator to purification them. Experimental results using the CIFAR-10 dataset showed an average detection performance of approximately 68.77%, an average purification performance of approximately 72.20%, and an average defense performance of approximately 93.11% derived from restoration and detection performance.

A Study on Performance Improvement of GVQA Model Using Transformer (트랜스포머를 이용한 GVQA 모델의 성능 개선에 관한 연구)

  • Park, Sung-Wook;Kim, Jun-Yeong;Park, Jun;Lee, Han-Sung;Jung, Se-Hoon;Sim, Cun-Bo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.749-752
    • /
    • 2021
  • 오늘날 인공지능(Artificial Intelligence, AI) 분야에서 가장 구현하기 어려운 분야 중 하나는 추론이다. 근래 추론 분야에서 영상과 언어가 결합한 다중 모드(Multi-modal) 환경에서 영상 기반의 질의 응답(Visual Question Answering, VQA) 과업에 대한 AI 모델이 발표됐다. 얼마 지나지 않아 VQA 모델의 성능을 개선한 GVQA(Grounded Visual Question Answering) 모델도 발표됐다. 하지만 아직 GVQA 모델도 완벽한 성능을 내진 못한다. 본 논문에서는 GVQA 모델의 성능 개선을 위해 VCC(Visual Concept Classifier) 모델을 ViT-G(Vision Transformer-Giant)/14로 변경하고, ACP(Answer Cluster Predictor) 모델을 GPT(Generative Pretrained Transformer)-3으로 변경한다. 이와 같은 방법들은 성능을 개선하는 데 큰 도움이 될 수 있다고 사료된다.

The Effect of ChatGPT Factors & Innovativeness on Switching Intention : Using Theory of Reasoned Action (TRA)

  • Hee-Young CHO;Hoe-Chang YANG;Byoung-Jo HWANG
    • Journal of Distribution Science
    • /
    • v.21 no.8
    • /
    • pp.83-96
    • /
    • 2023
  • Purpose: This study examined the relationship between the factors (Credibility, Usability) and user Innovativeness of the ChatGPT on TRA (Theory of Reasoned Action; Subjective Norm, Attitude) and Switching Intention. TRA and Innovation Diffusion Theory (IDT) were used. Research design, data and methodology: From April 26 to 27, 2023, an online panel survey agency was commissioned to conduct a survey of GhatGPT users in their 20s and 40s in Korea, and a total of 210 people were used for the final analysis. Verification of the research model was performed using SPSS and AMOS. Results: First, ChatGPT factors (Credibility, Usability) were found to have positive effects on TRA (Subjective Norm, Attitude). Second, ChatGPT user Innovativeness was found to have a positive effect on TRA (Subjective Norm, Attitude). Third, ChatGPT users' TRA (Subjective Norm, Attitude) were found to have positive effects on Switching Intention. Conclusions: These results mean that the superior Usability and Credibility of ChatGPT and the Innovativeness of users have a significant effect on the Switching Intention from existing Portal Service (Naver, Google, Daum, etc.) to ChatGPT. Generative AI such as ChatGPT should strive to develop various services such as improving the convenience of functions so that innovative users can use them easily and conveniently in order to provide services that meet expectations.

Comparative Analysis of Recent Studies on Aspect-Based Sentiment Analysis

  • Faiz Ghifari Haznitrama;Ho-Jin Choi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.647-649
    • /
    • 2023
  • Sentiment analysis as part of natural language processing (NLP) has received much attention following the demand to understand people's opinions. Aspect-based sentiment analysis (ABSA) is a fine-grained subtask from sentiment analysis that aims to classify sentiment at the aspect level. Throughout the years, researchers have formulated ABSA into various tasks for different scenarios. Unlike the early works, the current ABSA utilizes many elements to improve performance and provide more details to produce informative results. These ABSA formulations have provided greater challenges for researchers. However, it is difficult to explore ABSA's works due to the many different formulations, terms, and results. In this paper, we conduct a comparative analysis of recent studies on ABSA. We mention some key elements, problem formulations, and datasets currently utilized by most ABSA communities. Also, we conduct a short review of the latest papers to find the current state-of-the-art model. From our observations, we found that span-level representation is an important feature in solving the ABSA problem, while multi-task learning and generative approach look promising. Finally, we review some open challenges and further directions for ABSA research in the future.

Applications and Concerns of Generative AI: ChatGPT in the Field of Occupational Health (산업보건분야에서의 생성형 AI: ChatGPT 활용과 우려)

  • Ju Hong Park;Seunghon Ham
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.412-418
    • /
    • 2023
  • As advances in artificial intelligence (AI) increasingly approach areas once relegated to the realm of science fiction, there is growing public interest in using these technologies for practical everyday tasks in both the home and the workplace. This paper explores the applications of and implications for of using ChatGPT, a conversational AI model based on GPT-3.5 and GPT-4.0, in the field of occupational health and safety. After gaining over one million users within five days of its launch, ChatGPT has shown promise in addressing issues ranging from emergency response to chemical exposure to recommending personal protective equipment. However, despite its potential usefulness, the integration of AI into scientific work and professional settings raises several concerns. These concerns include the ethical dimensions of recognizing AI as a co-author in academic publications, the limitations and biases inherent in the data used to train these models, legal responsibilities in professional contexts, and potential shifts in employment following technological advances. This paper aims to provide a comprehensive overview of these issues and to contribute to the ongoing dialogue on the responsible use of AI in occupational health and safety.

A Study on Evaluating Summarization Performance using Generative Al Model (생성형 AI 모델을 활용한 요약 성능 평가 연구 )

  • Gyuri Choi;Seoyoon Park;Yejee Kang;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.228-233
    • /
    • 2023
  • 인간의 수동 평가 시 시간과 비용의 소모, 주석자 간의 의견 불일치, 평가 결과의 품질 등 불가피한 한계가 발생한다. 본 논문에서는 맥락을 고려하고 긴 문장 입출력이 가능한 ChatGPT를 활용한 한국어 요약문 평가가 인간 평가를 대체하거나 보조하는 것이 가능한가에 대해 살펴보았다. 이를 위해 ChatGPT가 생성한 요약문에 정량적 평가와 정성적 평가를 진행하였으며 정량적 지표로 BERTScore, 정성적 지표로는 일관성, 관련성, 문법성, 유창성을 사용하였다. 평가 결과 ChatGPT4의 경우 인간 수동 평가를 보조할 수 있는 가능성이 있음을 확인하였다. ChatGPT가 영어 기반으로 학습된 모델임을 고려하여 오류 발견 성능을 검증하고자 한국어 오류 요약문으로 추가 평가를 진행하였다. 그 결과 ChatGPT3.5와 ChatGPT4의 오류 요약 평가 성능은 불안정하여 인간을 보조하기에는 아직 어려움이 있음을 확인하였다.

  • PDF

Generative Model Utilizing Multi-Level Attention for Persona-Grounded Long-Term Conversations (페르소나 기반의 장기 대화를 위한 다각적 어텐션을 활용한 생성 모델)

  • Bit-Na Keum;Hong-Jin Kim;Jin-Xia Huang;Oh-Woog Kwon;Hark-Soo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.281-286
    • /
    • 2023
  • 더욱 사람같은 대화 모델을 실현하기 위해, 페르소나 메모리를 활용하여 응답을 생성하는 연구들이 활발히 진행되고 있다. 다수의 기존 연구들에서는 메모리로부터 관련된 페르소나를 찾기 위해 별도의 검색 모델을 이용한다. 그러나 이는 전체 시스템에 속도 저하를 일으키고 시스템을 무겁게 만드는 문제가 있다. 또한, 기존 연구들은 페르소나를 잘 반영해 응답하는 능력에만 초점을 두는데, 그 전에 페르소나 참조의 필요성 여부를 판별하는 능력이 선행되어야 한다. 따라서, 우리의 제안 모델은 검색 모델을 활용하지 않고 생성 모델의 내부적인 연산을 통해 페르소나 메모리의 참조가 필요한지를 판별한다. 참조가 필요하다고 판단한 경우에는 관련된 페르소나를 반영하여 응답하며, 그렇지 않은 경우에는 대화 컨텍스트에 집중하여 응답을 생성한다. 실험 결과를 통해 제안 모델이 장기적인 대화에서 효과적으로 동작함을 확인하였다.

  • PDF

Predictive Model for Real Estate Prices Using Sentiment Index of news articles based on Generative AI (생성 AI 기반 뉴스 기사 심리지수를 활용한 부동산 가격 예측 모델)

  • Kim Sua;Kwon Miju;Cho Soobin;Kim Eunsoo;Hyon Hee Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1198-1199
    • /
    • 2023
  • 부동산 시장은 다양한 요인에 의해 가격이 결정되며 거시경제 변수뿐 만 아니라 뉴스 기사, SNS 등 다양한 비정형 데이터의 영향을 받는다. 특히 뉴스 기사는 국민들이 느끼는 경제 심리를 반영하고 있어 부동산 가격에 영향을 크게 미치는 변수라고 판단된다. 본 연구에서는 뉴스 기사의 세분화된 감정 분석을 통해 전통적인 분석 방법보다 더 의미 있는 결과를 얻을 수 있는 부동산 가격 예측 모델을 생성하였으며 뉴스 기사로부터 심리 지수를 산출하기 위해 생성 AI 를 활용하였다. 제안하는 매매가격지수 예측 모델을 통해 부동산 시장과 뉴스 기사와의 관계성에 대해 파악할 수 있으며, 사회/경제적 동향을 반영한 부동산 가격 변동을 예측할 수 있을 것으로 보인다.

Is ChatGPT a "Fire of Prometheus" for Non-Native English-Speaking Researchers in Academic Writing?

  • Sung Il Hwang;Joon Seo Lim;Ro Woon Lee;Yusuke Matsui;Toshihiro Iguchi;Takao Hiraki;Hyungwoo Ahn
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.952-959
    • /
    • 2023
  • Large language models (LLMs) such as ChatGPT have garnered considerable interest for their potential to aid non-native English-speaking researchers. These models can function as personal, round-the-clock English tutors, akin to how Prometheus in Greek mythology bestowed fire upon humans for their advancement. LLMs can be particularly helpful for non-native researchers in writing the Introduction and Discussion sections of manuscripts, where they often encounter challenges. However, using LLMs to generate text for research manuscripts entails concerns such as hallucination, plagiarism, and privacy issues; to mitigate these risks, authors should verify the accuracy of generated content, employ text similarity detectors, and avoid inputting sensitive information into their prompts. Consequently, it may be more prudent to utilize LLMs for editing and refining text rather than generating large portions of text. Journal policies concerning the use of LLMs vary, but transparency in disclosing artificial intelligence tool usage is emphasized. This paper aims to summarize how LLMs can lower the barrier to academic writing in English, enabling researchers to concentrate on domain-specific research, provided they are used responsibly and cautiously.

Best Practice on Automatic Toon Image Creation from JSON File of Message Sequence Diagram via Natural Language based Requirement Specifications

  • Hyuntae Kim;Ji Hoon Kong;Hyun Seung Son;R. Young Chul Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • In AI image generation tools, most general users must use an effective prompt to craft queries or statements to elicit the desired response (image, result) from the AI model. But we are software engineers who focus on software processes. At the process's early stage, we use informal and formal requirement specifications. At this time, we adapt the natural language approach into requirement engineering and toon engineering. Most Generative AI tools do not produce the same image in the same query. The reason is that the same data asset is not used for the same query. To solve this problem, we intend to use informal requirement engineering and linguistics to create a toon. Therefore, we propose a sequence diagram and image generation mechanism by analyzing and applying key objects and attributes as an informal natural language requirement analysis. Identify morpheme and semantic roles by analyzing natural language through linguistic methods. Based on the analysis results, a sequence diagram and an image are generated through the diagram. We expect consistent image generation using the same image element asset through the proposed mechanism.