• Title/Summary/Keyword: Generative Adversarial Networks (GANs)

Search Result 43, Processing Time 0.022 seconds

Synthetic Image Dataset Generation for Defense using Generative Adversarial Networks (국방용 합성이미지 데이터셋 생성을 위한 대립훈련신경망 기술 적용 연구)

  • Yang, Hunmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.49-59
    • /
    • 2019
  • Generative adversarial networks(GANs) have received great attention in the machine learning field for their capacity to model high-dimensional and complex data distribution implicitly and generate new data samples from the model distribution. This paper investigates the model training methodology, architecture, and various applications of generative adversarial networks. Experimental evaluation is also conducted for generating synthetic image dataset for defense using two types of GANs. The first one is for military image generation utilizing the deep convolutional generative adversarial networks(DCGAN). The other is for visible-to-infrared image translation utilizing the cycle-consistent generative adversarial networks(CycleGAN). Each model can yield a great diversity of high-fidelity synthetic images compared to training ones. This result opens up the possibility of using inexpensive synthetic images for training neural networks while avoiding the enormous expense of collecting large amounts of hand-annotated real dataset.

Text-to-Face Generation Using Multi-Scale Gradients Conditional Generative Adversarial Networks (다중 스케일 그라디언트 조건부 적대적 생성 신경망을 활용한 문장 기반 영상 생성 기법)

  • Bui, Nguyen P.;Le, Duc-Tai;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.764-767
    • /
    • 2021
  • While Generative Adversarial Networks (GANs) have seen huge success in image synthesis tasks, synthesizing high-quality images from text descriptions is a challenging problem in computer vision. This paper proposes a method named Text-to-Face Generation Using Multi-Scale Gradients for Conditional Generative Adversarial Networks (T2F-MSGGANs) that combines GANs and a natural language processing model to create human faces has features found in the input text. The proposed method addresses two problems of GANs: model collapse and training instability by investigating how gradients at multiple scales can be used to generate high-resolution images. We show that T2F-MSGGANs converge stably and generate good-quality images.

Deep Learning-based Single Image Generative Adversarial Network: Performance Comparison and Trends (딥러닝 기반 단일 이미지 생성적 적대 신경망 기법 비교 분석)

  • Jeong, Seong-Hun;Kong, Kyeongbo
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • Generative adversarial networks(GANs) have demonstrated remarkable success in image synthesis. However, since GANs show instability in the training stage on large datasets, it is difficult to apply to various application fields. A single image GAN is a field that generates various images by learning the internal distribution of a single image. In this paper, we investigate five Single Image GAN: SinGAN, ConSinGAN, InGAN, DeepSIM, and One-Shot GAN. We compare the performance of each model and analyze the pros and cons of a single image GAN.

Improving Fidelity of Synthesized Voices Generated by Using GANs (GAN으로 합성한 음성의 충실도 향상)

  • Back, Moon-Ki;Yoon, Seung-Won;Lee, Sang-Baek;Lee, Kyu-Chul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.1
    • /
    • pp.9-18
    • /
    • 2021
  • Although Generative Adversarial Networks (GANs) have gained great popularity in computer vision and related fields, generating audio signals independently has yet to be presented. Unlike images, an audio signal is a sampled signal consisting of discrete samples, so it is not easy to learn the signals using CNN architectures, which is widely used in image generation tasks. In order to overcome this difficulty, GAN researchers proposed a strategy of applying time-frequency representations of audio to existing image-generating GANs. Following this strategy, we propose an improved method for increasing the fidelity of synthesized audio signals generated by using GANs. Our method is demonstrated on a public speech dataset, and evaluated by Fréchet Inception Distance (FID). When employing our method, the FID showed 10.504, but 11.973 as for the existing state of the art method (lower FID indicates better fidelity).

Automaitc Generation of Fashion Image Dataset by Using Progressive Growing GAN (PG-GAN을 이용한 패션이미지 데이터 자동 생성)

  • Kim, Yanghee;Lee, Chanhee;Whang, Taesun;Kim, Gyeongmin;Lim, Heuiseok
    • Journal of Internet of Things and Convergence
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2018
  • Techniques for generating new sample data from higher dimensional data such as images have been utilized variously for speech synthesis, image conversion and image restoration. This paper adopts Progressive Growing of Generative Adversarial Networks(PG-GANs) as an implementation model to generate high-resolution images and to enhance variation of the generated images, and applied it to fashion image data. PG-GANs allows the generator and discriminator to progressively learn at the same time, continuously adding new layers from low-resolution images to result high-resolution images. We also proposed a Mini-batch Discrimination method to increase the diversity of generated data, and proposed a Sliced Wasserstein Distance(SWD) evaluation method instead of the existing MS-SSIM to evaluate the GAN model.

Research Trends of Generative Adversarial Networks and Image Generation and Translation (GAN 적대적 생성 신경망과 이미지 생성 및 변환 기술 동향)

  • Jo, Y.J.;Bae, K.M.;Park, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.91-102
    • /
    • 2020
  • Recently, generative adversarial networks (GANs) is a field of research that has rapidly emerged wherein many studies conducted shows overwhelming results. Initially, this was at the level of imitating the training dataset. However, the GAN is currently useful in many fields, such as transformation of data categories, restoration of erased parts of images, copying facial expressions of humans, and creation of artworks depicting a dead painter's style. Although many outstanding research achievements have been attracting attention recently, GANs have encountered many challenges. First, they require a large memory facility for research. Second, there are still technical limitations in processing high-resolution images over 4K. Third, many GAN learning methods have a problem of instability in the training stage. However, recent research results show images that are difficult to distinguish whether they are real or fake, even with the naked eye, and the resolution of 4K and above is being developed. With the increase in image quality and resolution, many applications in the field of design and image and video editing are now available, including those that draw a photorealistic image as a simple sketch or easily modify unnecessary parts of an image or a video. In this paper, we discuss how GANs started, including the base architecture and latest technologies of GANs used in high-resolution, high-quality image creation, image and video editing, style translation, content transfer, and technology.

Study on hole-filling technique of motion capture images using GANs (Generative Adversarial Networks) (GANs(Generative Adversarial Networks)를 활용한 모션캡처 이미지의 hole-filling 기법 연구)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.160-161
    • /
    • 2019
  • As a method for modeling a three-dimensional object, there are a method using a 3D scanner, a method using a motion capture system, and a method using a Kinect system. Through this method, a portion that is not captured due to occlusion occurs in the process of creating a three-dimensional object. In order to implement a perfect three-dimensional object, it is necessary to arbitrarily fill the obscured part. There is a technique to fill the unexposed part by various image processing methods. In this study, we propose a method using GANs, which is the latest trend of unsupervised machine learning, as a method for more natural hole-filling.

  • PDF

Deep Adversarial Residual Convolutional Neural Network for Image Generation and Classification

  • Haque, Md Foysal;Kang, Dae-Seong
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.111-120
    • /
    • 2020
  • Generative adversarial networks (GANs) achieved impressive performance on image generation and visual classification applications. However, adversarial networks meet difficulties in combining the generative model and unstable training process. To overcome the problem, we combined the deep residual network with upsampling convolutional layers to construct the generative network. Moreover, the study shows that image generation and classification performance become more prominent when the residual layers include on the generator. The proposed network empirically shows that the ability to generate images with higher visual accuracy provided certain amounts of additional complexity using proper regularization techniques. Experimental evaluation shows that the proposed method is superior to image generation and classification tasks.

Combining Conditional Generative Adversarial Network and Regression-based Calibration for Cloud Removal of Optical Imagery (광학 영상의 구름 제거를 위한 조건부 생성적 적대 신경망과 회귀 기반 보정의 결합)

  • Kwak, Geun-Ho;Park, Soyeon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1357-1369
    • /
    • 2022
  • Cloud removal is an essential image processing step for any task requiring time-series optical images, such as vegetation monitoring and change detection. This paper presents a two-stage cloud removal method that combines conditional generative adversarial networks (cGANs) with regression-based calibration to construct a cloud-free time-series optical image set. In the first stage, the cGANs generate initial prediction results using quantitative relationships between optical and synthetic aperture radar images. In the second stage, the relationships between the predicted results and the actual values in non-cloud areas are first quantified via random forest-based regression modeling and then used to calibrate the cGAN-based prediction results. The potential of the proposed method was evaluated from a cloud removal experiment using Sentinel-2 and COSMO-SkyMed images in the rice field cultivation area of Gimje. The cGAN model could effectively predict the reflectance values in the cloud-contaminated rice fields where severe changes in physical surface conditions happened. Moreover, the regression-based calibration in the second stage could improve the prediction accuracy, compared with a regression-based cloud removal method using a supplementary image that is temporally distant from the target image. These experimental results indicate that the proposed method can be effectively applied to restore cloud-contaminated areas when cloud-free optical images are unavailable for environmental monitoring.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.