• Title/Summary/Keyword: Generated mean power

Search Result 101, Processing Time 0.027 seconds

The Effects on Cutting Performance by Machining Parameters of Nd : YAG Laser (Nd : YAG레이저의 가공 파라메터가 절단 성능에 미치는 영향에 관한 연구)

  • 한응교;박두원;이범성;이명호;임흥순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 1992
  • Generally, laser machines with high generated power can be developed by means of enhancing their mean power, since the enhancement of mean power exerts an influence on peripheral parameters and machining performance. In this research, we evaluate the various machining properties by the use of two machines which bear different mean power each other, so that we may study various effects of the enhancement of mean power. As a result, when the mean power comes to be enhanced to 75%, we obtain the increase of output energy up to 69% and of peak power more than 95%, and also obtain almost twice of the cutting speed. Moreover we find the fact that if the test pieces have enough thickness in contrast with output energy, the pulse frequency moves toward the frequency bandwidth which takes proportion to the cutting speed mas well as to the amount of material removal per unit time. In addition it is finally obtained that the laser machine with high output power yields small taper degrees at kerf parts, while it has large cutting widiths and dross lengths.

Measurement of Flow Ripple Generated by Balanced Vane Pumps in Automotive Power Steering Systems (동력조향용 압력평형형 베인펌프의 유량맥동 계측)

  • Kim, Do-Tae;Kim, Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.70-78
    • /
    • 2000
  • A balanced vane pump for the use of automotive power steering systems generates a flow ripple which is imposed upon the mean flow rate. The flow ripple interacts with the characteristics of the connected pipes, valves and steering gear in a complex manner to produce a pressure ripple, also known as fluid-borne noise. In order to reduce vibration level and produce quieter and more reliable power steering systems, it is important to measure the flow ripple produced by a pump with high accuracy and fast response. In this paper, the flow ripple generated by a vane pump in automotive power steering systems is measured by the remote instantaneous flow rate measurement method (RIFM) using hydraulic pipeline dynamics. In experiment, flow and pressure ripple wave forms are measured under various operating conditions. Also, the parameters affected upon the flow and pressure ripple are investigated by the frequency analysis.

  • PDF

Prediction of Wind Power Generation at Southwest Coast of Korea Considering Uncertainty of HeMOSU-1 Wind Speed Data (HeMOSU-1호 관측풍속의 불확실성을 고려한 서남해안의 풍력 발전량 예측)

  • Lee, Geenam;Kim, Donghyawn;Kwon, Osoon
    • New & Renewable Energy
    • /
    • v.10 no.2
    • /
    • pp.19-28
    • /
    • 2014
  • Wind power generation of 5 MW wind turbine was predicted by using wind measurement data from HeMOSU-1 which is at south west coast of Korea. Time histories of turbulent wind was generated from 10-min mean wind speed and then they were used as input to Bladed to estimated electric power. Those estimated powers are used in both polynominal regression and neural network training. They were compared with each other for daily production and yearly production. Effect of mean wind speed and turbulence intensity were quantitatively analyzed and discussed. This technique further can be used to assess lifetime power of wind turbine.

Estimation of Genetic Characteristic and Cumulative Power of Breed Discrimination Using Microsatellite Markers in Hanwoo (Microsatellite Marker를 사용한 한우 품종 식별력 및 유전적 특성 분석)

  • Oh, Jae-Don;Lee, Jin-Ah;Kong, Hong-Sik;Park, Keong-Do;Yoon, Du-Hak;Jeon, Gwang-Ju;Lee, Hak-Kyo
    • Journal of Embryo Transfer
    • /
    • v.23 no.3
    • /
    • pp.203-209
    • /
    • 2008
  • To estimate the genetic characteristics and cumulative power of discrimination (CPD) existing among Hanwoo (Korean cattle) and exotic foreign population (Angus, Herford, Charolais, Holstein) we used a total of 414 genomic DNAs from five breeds population (Hanwoo, Angus, Hereford, Charolais, Holstein). Genetic characteristics indices including mean allele number among loci, unbiased heterozygosity ($h_i$) within locus and polymorphic information content (PIC) and unbiased average heterozygosity (H) among loci in four breeds were calculated using the generated allele frequencies by each marker. The mean allele numbers for all loci ranged between 5 and 7 while heterozygosity (H) ranged from 0.75 (HW) to 0.64 (HF) among loci and across breeds heterozygosity (H) was 0.69. The generated unbiased average heterozygosity among loci in each breed was integrated to the global formula of CPD resulting in 99.71 % within the populations. The genetic variation of HW (Hanwoo) showed highest estimates among the analyzed breeds.

A wireless monitoring system for monocrystalline PV system

  • Kelebekler, Ersoy;Ergun, Riza Emre
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.123-134
    • /
    • 2020
  • Photovoltaic systems are progressively attached importance and their installed capacity increases day by day because of their reliability, decremented installation and operating cost and simple construction structure. Generated power obtained from a photovoltaic system changes depending upon regional distinctness, and It can be estimated approximately by taking into consideration mean global radiation amount, temperature and humidity. However, there may be different regional negative or positive factors like dust, air pollution, desert powder which affect generated power. The best reliable data for a region can be obtained from the existing photovoltaic system in the region. For this purpose, a monitoring system for 1000W monocrystalline photovoltaic system constructed at Kocaeli University Uzunciftlik Nuh Cimento Vocational High Scholl is prepared. The installed monitoring system shows and records real values generated from the photovoltaic system and environmental data. In the study, Instantaneous data obtained from the monitoring system for October 2018 and 7th October 2018 is given within figures. Additionally, daily and monthly total energy productions of the photovoltaic system are given for October 2018 and date interval between July 2018 and March 2018, respectively.

Performance Analysis of Photovoltaic Power Generator by Usage Battery Charge (축전지 사용 유무에 따른 태양광발전기의 성능 분석)

  • Yun, Sung Wook;Choi, Man Kwon;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.220-227
    • /
    • 2013
  • This study examined the electric power quantity derived from solar radiation after installing a photovoltaic power generation system on the rooftop of building adjacent to a greenhouse with a view to reducing the operating expenses of the greenhouse by securing electric energy required to run it. Results of the study can be summed up as follows: The maximum, mean, and minimum solar radiation on the horizontal plane was $26.1MJ{\cdot}m^{-2}$, $14,0MJ{\cdot}m^{-2}$, and $0.6MJ{\cdot}m^{-2}$, respectively and individual the daily electric energy generated was about 6.1 kWh, 3.7 kWh, and 0.01 kWh. The cumulative total amounts of solar radiation and electric energy was about $4,378.2MJ{\cdot}m^{-2}$ and 1,163.2 kWh, respectively. Maximum, mean and minimum cumulative electric energy consumed through each load respectively was 4.5 kWh, 2.4 kWh, and 0.0 kWh and the cumulative electric energy were 739.2 kWh, which accounted for about 63.5% of generated power. In case of the mean amount of power consumption of the system used for this study, the small capacity of heater and the short operating hours meant there was enough power; while big capacity of heater led to a shortage, and if the array surface temperature increased relatively, the energy became proportionate to solar radiation and generated power does not increase. The correlation coefficient between the two factors was 0.851, which indicates a high correlation coefficient.

A Power-Generation System using Cavitation jet flow (케비테이션 제트 유동을 이용한 발전 시스템)

  • Na, Jeoungsu;Lee, Kangju;Lee, Bongyeol;Joo, Namsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.162.1-162.1
    • /
    • 2010
  • Cavitation phenomenon has long been a difficult problem that regarded as negative event to fluid machines or industrial facilities. In the latest, however, some engineers became to understand the power of cavitation and use it to cleaning wall after developing cavitation nozzle. In this paper, we introduce new concept for power-generation system using cavitation jet flow maid by nozzle and impulse turbine in vacuum condition. The vacuum needed to make cavitation is generated naturally by Torricelli's vacuum, 10.23m effective head drop without additional power. We analyzed water's boiling and the steam's mean free path according to vacuum purity levels for nozzles and turbine blades. The nozzles make water accelerate in the neck and boil in expansion section of the nozzles. The shape of the impulse turbine is designed for absorption of the molecule's kinetic energy of the steam.

  • PDF

Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames (난류 제트확산화염의 연소소음 특성에 관한 실험연구)

  • 김호석;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

Design of Generation Efficiency Fuzzy Prediction Model using Solar Power Element Data (태양광발전요소 데이터를 활용한 발전효율 퍼지 예측 모델 설계)

  • Cha, Wang-Cheol;Park, Joung-Ho;Cho, Uk-Rae;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1423-1427
    • /
    • 2014
  • Quantity of the solar power generation is heavily influenced by weather. In other words, due to difference in insolation, different quantity may be generated. However, it does not mean all areas with identical insolation produces same quantity because of various environmental aspects. Additionally, geographic factors such as altitude, height of plant may have an impact on the quantity. Hence, through this research, we designed a system to predict efficiency of the solar power generation system by applying insolation, weather factor such as duration of sunshine, cloudiness parameter and location. By applying insolation, weather data that are collected from various places, we established a system that fits with our nation. Apart from, we produced a geographic model equation through utilizing generated data installed nationwide. To design a prediction model that integrates two factors, we apply fuzzy algorithm, and validate the performance of system by establishing simulation system.

Performance and Emissions Characteristics of a Converted Liquefied Petroleum Gas (LPG) Engine with Mixer and Liquid Propane Injection (LPi) System

  • Choi, Gyeung-Ho;Kim, Jin-Ho;Cho, Ung-Lae;Chung, Yon-Jong;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.187-193
    • /
    • 2005
  • In this study, the performance and emission characteristics of a liquefied petroleum gas (LPG) engine converted from a diesel engine were examined by using mixer system and liquid propane injection (LPi) system. A compression ratio of 21 for the base diesel engine, was modified to 8, 8.5, 9 and 9.5. The engine performance and emissions characteristics are analyzed by investigating engine power, brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC), volumetric efficienry, CO, THC and NOx. Experimental results showed that the LPi system generated higher power and lower emissions than the conventional mixer fuel supply method.