• Title/Summary/Keyword: Generate Data

Search Result 3,066, Processing Time 0.028 seconds

An Auto Obstacle Collision Avoidance System using Reinforcement Learning and Motion VAE (강화학습과 Motion VAE 를 이용한 자동 장애물 충돌 회피 시스템 구현)

  • Zheng Si;Taehong Gu;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.4
    • /
    • pp.1-10
    • /
    • 2024
  • In the fields of computer animation and robotics, reaching a destination while avoiding obstacles has always been a difficult task. Moreover, generating appropriate motions while planning a route is even more challenging. Recently, academic circles are actively conducting research to generate character motions by modifying and utilizing VAE (Variational Auto-Encoder), a data-based generation model. Based on this, in this study, the latent space of the MVAE model is learned using a reinforcement learning method[1]. With the policy learned in this way, the character can arrive its destination while avoiding both static and dynamic obstacles with natural motions. The character can easily avoid obstacles moving in random directions, and it is experimentally shown that the performance is improved, and the learning time is greatly reduced compared to existing approach.

Development of a predictive model for hypoxia due to sedatives in gastrointestinal endoscopy: a prospective clinical study in Korea

  • Jung Wan Choe;Jong Jin Hyun;Seong-Jin Son;Seung-Hak Lee
    • Clinical Endoscopy
    • /
    • v.57 no.4
    • /
    • pp.476-485
    • /
    • 2024
  • Background/Aims: Sedation has become a standard practice for patients undergoing gastrointestinal (GI) endoscopy. However, considering the serious cardiopulmonary adverse events associated with sedatives, it is important to identify patients at high risk. Machine learning can generate reasonable prediction for a wide range of medical conditions. This study aimed to evaluate the risk factors associated with sedation during GI endoscopy and develop a predictive model for hypoxia during endoscopy under sedation. Methods: This prospective observational study enrolled 446 patients who underwent sedative endoscopy at the Korea University Ansan Hospital. Clinical data were used as predictor variables to construct predictive models using the random forest method that is a machine learning algorithm. Results: Seventy-two of the 446 patients (16.1%) experienced life-threatening hypoxia requiring immediate medical intervention. Patients who developed hypoxia had higher body weight, body mass index (BMI), neck circumference, and Mallampati scores. Propofol alone and higher initial and total dose of propofol were significantly associated with hypoxia during sedative endoscopy. Among these variables, high BMI, neck circumference, and Mallampati score were independent risk factors for hypoxia. The area under the receiver operating characteristic curve for the random forest-based predictive model for hypoxia during sedative endoscopy was 0.82 (95% confidence interval, 0.79-0.86) and displayed a moderate discriminatory power. Conclusions: High BMI, neck circumference, and Mallampati score were independently associated with hypoxia during sedative endoscopy. We constructed a model with acceptable performance for predicting hypoxia during sedative endoscopy.

A Study on Automated Reinforcement Detailing for Reinforced Concrete Structures Using BIM (BIM 기반 철근콘크리트 구조물의 자동 배근 모델 생성)

  • Park, U-Yeol;Yun, Seok-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.507-515
    • /
    • 2024
  • Recent advancements in Building Information Modeling(BIM) have significantly impacted the construction industry, driving competitiveness and innovation. However, rebar construction, a critical component influencing project quality and cost, has lagged behind in BIM adoption. Traditional methods relying heavily on 2D drawings for rebar detailing have hindered efficiency and introduced potential errors. This paper presents a novel system designed to automate the detailed modeling of rebar, thereby promoting BIM integration within rebar construction and optimizing construction management processes. The system leverages confirmed structural drawings from the post-structural design phase to automatically generate intricate rebar models for columns and beams. To ensure adherence to domestic structural design standards, the system is developed using C# programming language and the Revit API. By automating rebar modeling, this system aims to minimize human error, reduce labor-intensive tasks, and enhance overall rebar construction efficiency through the effective utilization of generated rebar model data.

Evaluation of Electrical Damage to Electric-vehicle Bearings under Actual Operating Conditions (실제 운전조건을 고려한 전기자동차 베어링의 전기적 손상 평가 )

  • Jungsoo Park;Jeongsik Kim;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.40 no.4
    • /
    • pp.111-117
    • /
    • 2024
  • Due to global CO2 emission reductions and fuel efficiency regulations, the trend toward transitioning from internal combustion engine vehicles to electric vehicles (EVs) has accelerated. Consequently, the problem of EV failures has become a focal point of active research. The parasitic capacitance generated during motor-shaft rotation induces voltage that deteriorates the raceway and ball surfaces of bearings, causing electrical damage in EVs. Despite numerous attempts to address this issue, most studies have been conducted under high viscosity lubricant and low load conditions. However, due to factors such as high-speed operation, rapid acceleration and deceleration, motor heating, and motor system-decelerator integration, current EV applications have shown diminished stability in lubrication films of motor bearings, thereby leveraging the investigation to address the risk of electrical damage. This study investigates the electrical damage to rolling bearing elements in EV motor drive systems. The experimental analysis focuses on the effects of electric currents and operational loads on bearing integrity. A test rig is designed to generate high-rate voltage specific to a motor system's parasitic capacitance, and bearing samples are exposed to these currents for specified durations. Component evaluation involves visual inspections and vibration measurements. In addition, a predictive model for electrical failure is developed based on accumulated data, which demonstrates the ability to predict the likelihood of electrical failure relative to the duration and intensity of current exposure. This in turn reduces uncertainties in practical applications regarding electrical erosion modes.

Application based on Generative AI and Prompt Engineering to Improve Children's Literacy (생성형 AI와 프롬프트 엔지니어링 기반 아동 문해력 향상을 위한 애플리케이션)

  • Soyeon Kim;Hogeon Seo
    • Smart Media Journal
    • /
    • v.13 no.8
    • /
    • pp.26-38
    • /
    • 2024
  • This paper discusses the use of GPT and GPT API for prompt engineering in the development of the interactive smart device lock screen application "Smart Lock," aimed at enhancing literacy among young children and lower-grade elementary and middle school students during critical language development periods. In an era where media usage via smartphones is widespread among children, smartphone-based media is often cited as a primary cause of declining literacy. This study proposes an application that simulates conversations with parents as a tool for improving literacy, providing an environment conducive to literacy enhancement through smartphone use. Generative AI GPT was employed to create literacy-improving problems. Using pre-generated data, situational dialogues with parents were presented, and prompt engineering was utilized to generate questions for the application. The response quality was improved through parameter tuning and function calling processes. This study investigates the potential of literacy improvement education using generative AI through the development process of interactive applications.

A Graph-Agent-Based Approach to Enhancing Knowledge-Based QA with Advanced RAG (지식 기반 QA개선을 위한 Advanced RAG 시스템 구현 방법: Graph Agent 활용)

  • Cheonsu Jeong
    • Knowledge Management Research
    • /
    • v.25 no.3
    • /
    • pp.99-119
    • /
    • 2024
  • This research aims to develop high-quality generative AI services by overcoming the limitations of existing Retrieval-Augmented Generation (RAG) models and implementing an enhanced graph-based RAG system to improve knowledge-based question answering (QA) systems. While traditional RAG models demonstrate high accuracy and fluency by utilizing retrieved information, their accuracy can be compromised due to the use of pre-loaded knowledge without rework. Additionally, the inability to incorporate real-time data after the RAG configuration leads to a lack of contextual understanding and potential biased information. To address these limitations, this study implements an enhanced RAG system utilizing graph technology. This system is designed to efficiently search and utilize information. In particular, LangGraph is employed to evaluate the reliability of retrieved information and to generate more accurate and improved answers by integrating various information. Furthermore, the specific operation method, key implementation steps, and case studies are presented with implementation code and verification results to enhance understanding of Advanced RAG technology. This research provides practical guidelines for actively implementing enterprise services utilizing Advanced RAG, making it significant.

A Deep Learning System for Emotional Cat Sound Classification and Generation (감정별 고양이 소리 분류 및 생성 딥러닝 시스템)

  • Joo Yong Shim;SungKi Lim;Jong-Kook Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.492-496
    • /
    • 2024
  • Cats are known to express their emotions through a variety of vocalizations during interactions. These sounds reflect their emotional states, making the understanding and interpretation of these sounds crucial for more effective communication. Recent advancements in artificial intelligence has introduced research related to emotion recognition, particularly focusing on the analysis of voice data using deep learning models. Building on this background, the study aims to develop a deep learning system that classifies and generates cat sounds based on their emotional content. The classification model is trained to accurately categorize cat vocalizations by emotion. The sound generation model, which uses deep learning based models such as SampleRNN, is designed to produce cat sounds that reflect specific emotional states. The study finally proposes an integrated system that takes recorded cat vocalizations, classify them by emotion, and generate cat sounds based on user requirements.

Success rate of all-ceramic FPDs depending on the time of restoration between 2011 and 2023

  • Philipp-Cornelius Pott;Michael Eisenburger;Meike Stiesch
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.5
    • /
    • pp.267-277
    • /
    • 2024
  • PURPOSE. Studies about success of FPDs (fixed partial dentures) mostly include restorations built by different clinicians. This results in limited comparability of the data. The aim of this study was to evaluate complications of all-ceramic FPDs built by 1 dentist between 2011 to 2023. MATERIALS AND METHODS. 342 all-ceramic FPDs were observed during follow-up care. 48 patients received 262 single crowns, 59 bridges and 21 veneers. Because of the different lengths of the bridges, units were defined as restored or replaced tooth. 465 units performed by the same dentist from Nov 2011 to Nov 2022 were included. Influencing factors "restoration", "construction", "abutment", "localization", "vitality" and "application period" were evaluated using Kaplan-Meier Analysis and Log-Rank Tests. RESULTS. 406 units (87.3 %) showed no complication. 7 correctable chippings (1.5 %) and 10 recementable decementations (2.1 %) occurred. Six decemented units got lost (1.3 %). 21 units failed due to fatal fracture (4.5 %). Crown margin complications, such as secondary caries, occurred in 15 units (3.2 %). Comparing the influencing factors resulted in higher complication rates of veneers (P < .001), of monolithic ceramics (P ≤ .050) and of molar-restorations (P = .047). The application period had no influence on the success and survival rate. CONCLUSION. Overall, all-ceramic FPDs showed good clinical results. Although less complications were observed with modern restorations, these more often led to complete failure. To generate evidence-based recommendations, further studies are needed to evaluate the mid- and short-term success and survival of current all-ceramic restorations.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

Study on data preprocessing methods for considering snow accumulation and snow melt in dam inflow prediction using machine learning & deep learning models (머신러닝&딥러닝 모델을 활용한 댐 일유입량 예측시 융적설을 고려하기 위한 데이터 전처리에 대한 방법 연구)

  • Jo, Youngsik;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.35-44
    • /
    • 2024
  • Research in dam inflow prediction has actively explored the utilization of data-driven machine learning and deep learning (ML&DL) tools across diverse domains. Enhancing not just the inherent model performance but also accounting for model characteristics and preprocessing data are crucial elements for precise dam inflow prediction. Particularly, existing rainfall data, derived from snowfall amounts through heating facilities, introduces distortions in the correlation between snow accumulation and rainfall, especially in dam basins influenced by snow accumulation, such as Soyang Dam. This study focuses on the preprocessing of rainfall data essential for the application of ML&DL models in predicting dam inflow in basins affected by snow accumulation. This is vital to address phenomena like reduced outflow during winter due to low snowfall and increased outflow during spring despite minimal or no rain, both of which are physical occurrences. Three machine learning models (SVM, RF, LGBM) and two deep learning models (LSTM, TCN) were built by combining rainfall and inflow series. With optimal hyperparameter tuning, the appropriate model was selected, resulting in a high level of predictive performance with NSE ranging from 0.842 to 0.894. Moreover, to generate rainfall correction data considering snow accumulation, a simulated snow accumulation algorithm was developed. Applying this correction to machine learning and deep learning models yielded NSE values ranging from 0.841 to 0.896, indicating a similarly high level of predictive performance compared to the pre-snow accumulation application. Notably, during the snow accumulation period, adjusting rainfall during the training phase was observed to lead to a more accurate simulation of observed inflow when predicted. This underscores the importance of thoughtful data preprocessing, taking into account physical factors such as snowfall and snowmelt, in constructing data models.