We conducted a study to identify the relationships between the investigated factors and provide a methodology and generate data by applying deterioration classes to the Seonjaryeong Forest Trail (4.3 km) in the Baekdudaegan Ridge. The average trail width (1.7 m) and bare width (1.4 m) were wider than those obtained in the previous studies. The frequency of trail deterioration was also high. Specific data on deterioration classes were obtained and evaluated using qualitative criteria. Specific data for heavy class stands at 20.1% in trail grade, 13.3 cm on average, and 16.1 cm in the center of erosion depth, 16.2 cm of CSA, 12.3 kg/cm (20.1 mm) on average and maximum 39.3 kg/cm (29.6 mm) of soil hardness. We observed a positive correlation between the deterioration class and trail grade, and the average and maximum soil erosion depths of the hill side were deeper than those of the ridge. The soil hardness data showed a statistically significant difference in terms of the transect site and calculation method (㎏/㎠, mm). Therefore, trail deterioration was observed at the sites having ≥20% trail grade; thus, continuous monitoring at fixed sites over time will be required for sustainability. Furthermore, the trail grade should be of the utmost priority in trail design and management.
Recently, with the development of computing technology and the improvement of the cloud environment, deep learning technology has developed, and attempts to apply deep learning to various fields are increasing. A typical example is anomaly detection, which is a technique for identifying values or patterns that deviate from normal data. Among the representative types of anomaly detection, it is very difficult to detect a contextual anomaly that requires understanding of the overall situation. In general, detection of anomalies in image data is performed using a pre-trained model trained on large data. However, since this pre-trained model was created by focusing on object classification of images, there is a limit to be applied to anomaly detection that needs to understand complex situations created by various objects. Therefore, in this study, we newly propose a two-step pre-trained model for detecting abnormal situation. Our methodology performs additional learning from image captioning to understand not only mere objects but also the complicated situation created by them. Specifically, the proposed methodology transfers knowledge of the pre-trained model that has learned object classification with ImageNet data to the image captioning model, and uses the caption that describes the situation represented by the image. Afterwards, the weight obtained by learning the situational characteristics through images and captions is extracted and fine-tuning is performed to generate an anomaly detection model. To evaluate the performance of the proposed methodology, an anomaly detection experiment was performed on 400 situational images and the experimental results showed that the proposed methodology was superior in terms of anomaly detection accuracy and F1-score compared to the existing traditional pre-trained model.
The lunar exploration autonomous vehicle operates based on the lunar topography information obtained from real-time image characterization. For highly accurate topography characterization, a large number of training images with various background conditions are required. Since the real lunar topography images are difficult to obtain, it should be helpful to be able to generate mimic lunar image data artificially on the basis of the planetary analogs site images and real lunar images available. In this study, we aim to artificially create lunar topography images by using the location information-based style transfer algorithm known as Wavelet Correct Transform (WCT2). We conducted comparative experiments using lunar analog site images and real lunar topography images taken during China's and America's lunar-exploring projects (i.e., Chang'e and Apollo) to assess the efficacy of our suggested approach. The results show that the proposed techniques can create realistic images, which preserve the topography information of the analog site image while still showing the same condition as an image taken on lunar surface. The proposed algorithm also outperforms a conventional algorithm, Deep Photo Style Transfer (DPST) in terms of temporal and visual aspects. For future work, we intend to use the generated styled image data in combination with real image data for training lunar topography objects to be applied for topographic detection and segmentation. It is expected that this approach can significantly improve the performance of detection and segmentation models on real lunar topography images.
The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.
Park, Ju-Hyun;Choi, Sangjun;Koh, Dong-Hee;Park, Donguk;Sung, Yeji
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.32
no.1
/
pp.21-30
/
2022
Objectives: The purpose of this study is to suggest an optimal method by comparing the analysis methods of work environment measurement datasets including left-censored data where one or more measurements are below the limit of detection (LOD). Methods: A computer program was used to generate left-censored datasets for various combinations of censoring rate (1% to 90%) and sample size (30 to 300). For the analysis of the censored data, the simple substitution method (LOD/2), β-substitution method, maximum likelihood estimation (MLE) method, Bayesian method, and regression on order statistics (ROS)were all compared. Each method was used to estimate four parameters of the log-normal distribution: (1) geometric mean (GM), (2) geometric standard deviation (GSD), (3) 95th percentile (X95), and (4) arithmetic mean (AM) for the censored dataset. The performance of each method was evaluated using relative bias and relative root mean squared error (rMSE). Results: In the case of the largest sample size (n=300), when the censoring rate was less than 40%, the relative bias and rMSE were small for all five methods. When the censoring rate was large (70%, 90%), the simple substitution method was inappropriate because the relative bias was the largest, regardless of the sample size. When the sample size was small and the censoring rate was large, the Bayesian method, the β-substitution method, and the MLE method showed the smallest relative bias. Conclusions: The accuracy and precision of all methods tended to increase as the sample size was larger and the censoring rate was smaller. The simple substitution method was inappropriate when the censoring rate was high, and the β-substitution method, MLE method, and Bayesian method can be widely applied.
If a company's actions to save or avoid taxes are judged to be tax evasion rather than legal tax action by the tax authorities, the company will not only pay tax but also non-tax costs such as damage to corporate image and stock price decline due to a series of tax evasion-related news articles. Therefore, this study measures the frequency of occurrence of tax evasion controversial keywords in internet news portal as a factor to measure the severity of the case, and analyzes the effect of the frequency of occurrence on corporate value. In the Korean stock market, we crawl related articles from internet news portal by using keywords that are controversial for tax evasion targeting top companies based on market capitalization, and generate a time series of the frequency of occurrence of keywords about tax evasion by company and analyze the effect of frequency of appearance on book value versus market capitalization. Through panel regression and impulse response analysis, it is analyzed that the frequency of appearance has a negative effect on the market capitalization and the effect gradually decreases until 12 months. This study examines whether the tax evasion issue affects the corporate value of Korean companies and suggests that it is necessary to take these influences into account when entrepreneurs set up tax-planning schemes.
KIPS Transactions on Software and Data Engineering
/
v.12
no.8
/
pp.371-380
/
2023
Relation extraction is to extract relationships between named entities from text. Traditionally, relation extraction methods only extract relations between predetermined subject and object entities. However, in end-to-end relation extraction, all possible relations must be extracted by considering the positions of the subject and object for each pair of entities, and so this method uses time and resources inefficiently. To alleviate this problem, this paper proposes a method that sets directions based on the positions of the subject and object, and extracts relations according to the directions. The proposed method utilizes existing relation extraction data to generate direction labels indicating the direction in which the subject points to the object in the sentence, adds entity position tokens and entity type to sentences to predict the directions using a pre-trained language model (KLUE-RoBERTa-base, RoBERTa-base), and generates representations of subject and object entities through probabilistic crossover operation. Then, we make use of these representations to extract relations. Experimental results show that the proposed model performs about 3 ~ 4%p better than a method for predicting integrated labels. In addition, when learning Korean and English data using the proposed model, the performance was 1.7%p higher in English than in Korean due to the number of data and language disorder and the values of the parameters that produce the best performance were different. By excluding the number of directional cases, the proposed model can reduce the waste of resources in end-to-end relation extraction.
International conference on construction engineering and project management
/
2022.06a
/
pp.1253-1253
/
2022
Although the construction industry is changing from a 2D-based to a 3D BIM-based management process, 2D drawings are still used as standards for permits and construction. For this reason, 2D deliverables extracted from 3D BIM are one of the essential achievements of BIM projects. However, due to technical and institutional problems that exist in practice, the process of extracting 2D deliverables from BIM requires additional work beyond generating 3D BIM models. In addition, the consistency of data between 3D BIM models and 2D deliverables is low, which is a major factor hindering work productivity in practice. To solve this problem, it is necessary to build BIM data that meets information requirements (IRs) for extracting 2D deliverables to minimize the amount of work of users and maximize the utilization of BIM data. However, despite this, the additional work that occurs in the BIM process for drawing creation is still a burden on BIM users. To solve this problem, the purpose of this study is to increase the productivity of the BIM process by automating the process of extracting 2D deliverables from BIM and securing data consistency between the BIM model and 2D deliverables. For this, an expert interview was conducted, and the requirements for automation of the process of extracting 2D deliverables from BIM were analyzed. Based on the requirements, the types of drawings and drawing expression elements that require automation of drawing generation in the design development stage were derived. Finally, the method for developing automation technology targeting elements that require automation was classified and analyzed, and the process for automatically extracting BIM-based 2D deliverables through templates and rule-based automation modules were derived. At this time, the automation module was developed as an add-on to Revit software, a representative BIM authoring tool, and 120 rule-based automation rulesets, and the combinations of these rulesets were used to automatically generate 2D deliverables from BIM. Through this, it was possible to automatically create about 80% of drawing expression elements, and it was possible to simplify the user's work process compared to the existing work. Through the automation process proposed in this study, it is expected that the productivity of extracting 2D deliverables from BIM will increase, thereby increasing the practical value of BIM utilization.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.1B
/
pp.1-9
/
2009
This study is focused on the analysis of loop characteristics of stage-discharge relation which is widely used for the production of discharge data and the simulation of loop stage-discharge relation using the numerical model. Analysis of consecutive stage and discharge data at 3 points revealed that loop of stage-discharge relationship is very strong. This means that the existing single stage-discharge relation may include large amount of error. Various flood events are simulated in mainstream of Han river with one-dimensional numerical model. The calculated stage data are compared with measured data. Especially continuous field-flow measurements concurrently collected with an Acoustic Doppler Velocity Meter (ADVM) on Hangang bridge in the case of 2007 flood event are used to verify the model applicability of estimating flows in open channels. This comparison shows that numerical model is an accurate and reliable alternative for making the real stage-discharge relation. Simulation of stage-discharge relation by a numerical model at Paldang and Hangang bridge showed good agreements with measured one, so it may be possible to generate real loop stage-discharge relation with properly calibrated and verified numerical model. It can be concluded that results of this study can contribute to error analysis of conventional single stage-discharge relation and development of loop stage-discharge relation with numerical model.
Korean Journal of Agricultural and Forest Meteorology
/
v.25
no.4
/
pp.245-257
/
2023
The representative crop in the Republic of Korea, rice, is cultivated over extensive areas every year, which resulting in reduced resistance to pests and diseases. One of the major rice diseases, rice blast disease, can lead to a significant decrease in yields when it occurs on a large scale, necessitating early detection and effective control of rice blast disease. Drone-based crop monitoring techniques are valuable for detecting abnormal growth, but frequent image capture for potential rice blast disease occurrences can consume significant labor and resources. The purpose of this study is to early detect rice blast disease using remote sensing data, such as drone and satellite images, along with weather data. Satellite images was helpful in identifying rice cultivation fields. Effective detection of paddy fields was achieved by utilizing vegetation and water indices. Subsequently, air temperature, relative humidity, and number of rainy days were used to calculate the risk of rice blast disease occurrence. An increase in the risk of disease occurrence implies a higher likelihood of disease development, and drone measurements perform at this time. Spectral reflectance changes in the red and near-infrared wavelength regions were observed at the locations where rice blast disease occurred. Clusters with low vegetation index values were observed at locations where rice blast disease occurred, and the time series data for drone images allowed for tracking the spread of the disease from these points. Finally, drone images captured before harvesting was used to generate spatial information on the incidence of rice blast disease in each field.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.