• 제목/요약/키워드: Generalized regression neural network

검색결과 40건 처리시간 0.03초

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence

  • Gullu, Hamza;Fedakar, Halil ibrahim
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.441-464
    • /
    • 2017
  • The determination of the mixture parameters of stabilization has become a great concern in geotechnical applications. This paper presents an effort about the application of artificial intelligence (AI) techniques including radial basis neural network (RBNN), multi-layer perceptrons (MLP), generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS) in order to predict the unconfined compressive strength (UCS) of silty soil stabilized with bottom ash (BA), jute fiber (JF) and steel fiber (SF) under different freeze-thaw cycles (FTC). The dosages of the stabilizers and number of freeze-thaw cycles were employed as input (predictor) variables and the UCS values as output variable. For understanding the dominant parameter of the predictor variables on the UCS of stabilized soil, a sensitivity analysis has also been performed. The performance measures of root mean square error (RMSE), mean absolute error (MAE) and determination coefficient ($R^2$) were used for the evaluations of the prediction accuracy and applicability of the employed models. The results indicate that the predictions due to all AI techniques employed are significantly correlated with the measured UCS ($p{\leq}0.05$). They also perform better predictions than nonlinear regression (NLR) in terms of the performance measures. It is found from the model performances that RBNN approach within AI techniques yields the highest satisfactory results (RMSE = 55.4 kPa, MAE = 45.1 kPa, and $R^2=0.988$). The sensitivity analysis demonstrates that the JF inclusion within the input predictors is the most effective parameter on the UCS responses, followed by FTC.

반도체 공정 최적화를 위한 일반화된 회귀 신경망 플라즈마 모델 (A Generalized Regression Neural Network Plasma Model for Semiconductor Process Optimization)

  • 박성진;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2744-2746
    • /
    • 2000
  • 일반화된 회귀 신경망을 이용하여 반도체 공정 최적화를 위한 플라즈마를 모델링한다. 플라즈마는 Box-W린son 실험계획표에 의해 특성화되었으며, 여기에서 변화시킨 인자로는 소스전력, 압력, 척지지대의 위치, 그리고 염소의 유량이다. 총 24회의 실험이 수행이 되었으며, 플라즈마 변수는 Langmuir Probe를 이용하여 측정하였다. 측정된 주요 플라즈마 변수로는 전자밀도, 전자온도, 그리고 플라즈마 전위이다. 폭변수를 점진적으로 증가시켜 회귀신경망을 최적화하였으며. 최적화된 모델은 통계적인 반응표면모델과 비교하였다. 비교 결과, 회귀신경망은 반응표면모델에 상응하는 예측능력을 보이고 있음을 알 수 있었다.

  • PDF

RNN(Recurrent Neural Network)을 이용한 기업부도예측모형에서 회계정보의 동적 변화 연구 (Dynamic forecasts of bankruptcy with Recurrent Neural Network model)

  • 권혁건;이동규;신민수
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.139-153
    • /
    • 2017
  • 기업의 부도는 이해관계자들뿐 아니라 사회에도 경제적으로 큰 손실을 야기한다. 따라서 기업부도예측은 경영학 연구에 있어 중요한 연구주제 중 하나로 다뤄져 왔다. 기존의 연구에서는 부도 예측을 위해 다변량판별분석, 로짓분석, 신경망분석 등 다양한 방법론을 이용하여 모형의 부도 예측력을 높이고 과적합의 문제를 해결하고자 시도하였다. 하지만 기존의 연구들이 시간적 요소를 고려하지 않아 발생할 수 있는 문제점들을 갖고 있음에도 불구하고 부도 예측에 있어서 동적 모형을 이용한 연구는 활발히 진행되고 있지 않으며 따라서 동적 모형을 이용하여 부도예측모형이 더욱 개선될 여지가 있다는 점을 확인할 수 있었다. 이에 본 연구에서는 RNN(Recurrent Neural Network)을 이용하여 시계열 재무 데이터의 동적 변화를 반영한 모형을 만들었으며 기존의 부도예측모형들과의 비교분석을 통해 부도 예측력의 향상에 도움이 된다는 것을 확인할 수 있었다. 모형의 유용성을 검증하기 위해 KIS Value의 재무 데이터를 이용하여 실험을 수행하였고 비교모형으로는 다변량판별분석, 로짓분석, SVM, 인공신경망을 선정하였다. 실험 결과 제안된 모형이 비교 모형에 비해 우수한 예측력을 보이는 것으로 나타났다. 따라서 본 연구는 변수들의 변화를 포착하는 동적 모형을 부도예측에 새롭게 제안하여 부도예측 연구의 발전에 기여할 수 있을 것으로 기대된다.

Reliability analysis of simply supported beam using GRNN, ELM and GPR

  • Jagan, J;Samui, Pijush;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.739-749
    • /
    • 2019
  • This article deals with the application of reliability analysis for determining the safety of simply supported beam under the uniformly distributed load. The uncertainties of the existing methods were taken into account and hence reliability analysis has been adopted. To accomplish this aim, Generalized Regression Neural Network (GRNN), Extreme Learning Machine (ELM) and Gaussian Process Regression (GPR) models are developed. Reliability analysis is the probabilistic style to determine the possibility of failure free operation of a structure. The application of probabilistic mathematics into the quantitative aspects of a structure and improve the qualitative aspects of a structure. In order to construct the GRNN, ELM and GPR models, the dataset contains Modulus of Elasticity (E), Load intensity (w) and performance function (${\delta}$) in which E and w are inputs and ${\delta}$ is the output. The achievement of the developed models was weighed by various statistical parameters; one among the most primitive parameter is Coefficient of Determination ($R^2$) which has 0.998 for training and 0.989 for testing. The GRNN outperforms the other ELM and GPR models. Other different statistical computations have been carried out, which speaks out the errors and prediction performance in order to justify the capability of the developed models.

인공신경망모형과 군집분석을 이용한 교각 세굴심 예측 (Prediction of Scour Depth Using Incorporation of Cluster Analysis into Artificial Neural Networks)

  • 이창환;안재현;이주헌;김태웅
    • 대한토목학회논문집
    • /
    • 제29권2B호
    • /
    • pp.111-120
    • /
    • 2009
  • 교각주위의 국부세굴은 교량붕괴의 주원인 중 하나로 알려져 있다. 세굴심을 산정하는 방법에는 경험식에 의한 방법과 수치모형을 이용한 시뮬레이션이 있다. 하지만 경험식에 의한 방법은 공식이 적용될 수 있는 유사한 상황에서만 제한적으로 사용가능하며, 수치모형을 이용한 방법은 비용이 많이 든다는 단점을 가지고 있다. 그러므로 본 연구에서는 세굴심 예측을 위한 CSU 공식, 다중회귀분석, 다양한 인공신경망 모형의 유용성을 비교분석하였다. 또한 세굴심을 산정하는데 있어 넓은 범위의 오차를 발생시키는 인공신경망 모형의 단점을 보완하기 위하여 본 연구에서는 인공신경망 모형에 군집분석을 결합하여 오차를 감소시키고자 하였다. 세굴심 예측을 위해 CSU 공식, 다중회귀분석, 다양한 인공신경망 모형을 적용해 본 결과 역전파알고리즘을 이용하는 인공신경망 모형이 가장 높은 정확성을 보였으며, 인공신경망 모형에 군집분석을 적용한 세굴심 예측에서는 군집수가 3일 때 가장 높은 정확도를 보였다. 군집분석을 적용한 인공신경망 모형의 정확도는 다른 모형과 비교할 때 최고 42.73%가 향상된 결과를 보여 인공신경망 모형내의 군집분석의 적용이 인공신경망의 오차를 줄이는데 큰 역할을 할 수 있음을 알 수 있었다.

유전자 알고리즘과 일반화된 회귀신경망을 이용한 플라즈마 증착공정 예측모델 (Prediction model of plasma deposition process using genetic algorithm and generalized regression neural network)

  • 이덕우;김병환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1117-1120
    • /
    • 2004
  • 경제적인 공정분석과 최적화를 위해서는 컴퓨터를 이용한 플라즈마 예측모델이 요구되고 있다. 본 연구에서는 일반화된 회귀 신경망 (GRNN)을 이용하여 플라즈마 증착공정 모델을 개발한다. GRNN의 예측성능은 패턴층 뉴런의 가우시안 함수를 구성하는 학습인자, 즉 spread에 의존한다. 종래의 모델에서는 모든 가우시안 함수의 spread가 동일한 값에서 최적화되었으며, 이로 인해 모델의 예측성능을 향상시키는 데에는 한계가 있었다. 본 연구에서는 유전자 알고리즘 (GA)를 이용하여 다변수 spread를 최적화하는 기법을 개발하였으며, 그 성능을 PECVD 공정에 의해 증착된 SiN 박막의 증착률에 적용하여 평가하였다. $2^{6-1}$ 부분인자 실험계획법에 의해 수집된 데이터를 이용하여 신경망을 학습하였고, 모델적합성 점검을 위해 별도의 12번의 실험을 수행하였다. 가우시안 함수의 spread는 0.2에서 2.0까지 0.2간격으로 증가시켰으며, 최적화한 GA-GRNN모델의 예측성능은 6.6 ${\AA}/min$이었다. 이는 종래의 방식으로 최적화한 모델의 예측성능 (13.5 ${\AA}/min$)과 비교하여 50.7% 향상된 예측성능이며, 이러한 향상은 제안한 GA-GRNN 모델이 플라즈마 공정 모델의 예측성능을 증진하는데 매우 효과적임을 보여준다.

  • PDF

설악산 산양을 대상으로 한 야생동물 서식지 적합성 모형에 관한 연구 (A Study on Wildlife Habitat Suitability Modeling for Goral (Nemorhaedus caudatus raddeanus) in Seoraksan National Park)

  • 서창완;최태영;최윤수;김동영
    • 한국환경복원기술학회지
    • /
    • 제11권3호
    • /
    • pp.28-38
    • /
    • 2008
  • The purpose of this study are to compare existing presence-absence predictive models and to predict suitable habitat for Goral (Nemorhaedus caudatus raddeanus) that is an endangered and protected species in Seoraksan national park using the best model among existing predictive models. The methods of this study are as follows. First, 375 location data and 9 environmental data layers were implemented to build a model. Secondly, 4 existing presence-absence models : Generalized Linear Model (GLM), Generalized Addictive Model (GAM), Classification and Regression Tree (CART), and Artificial Neural Network (ANN) were tested to predict the Goal habitat. Thirdly, ROC (Receiver Operating Characteristic) and Kappa statistics were used to calculate a model performance. Lastly, we verified models and created habitat suitability maps. The ROC AUC (Area Under the Curve) and Kappa values were 0.697/0.266 (GLM), 0.729/0.313 (GAM), 0.776/0.453 (CART), and 0.858/0.559 (ANN). Therefore, ANN was selected as the best model among 4 models. The models showed that elevation, slope, and distance to stream were the significant factors for Goal habitat. The ratio of predicted area of ANN using a threshold was 31.29%, but the area decreased when human effect was considered. We need to investigate the difference of various models to build a suitable wildlife habitat model under a given condition.

RCP4.5 기후변화 시나리오와 인공신경망을 이용한 우리나라 확률강우량의 변화 (The change of rainfall quantiles calculated with artificial neural network model from RCP4.5 climate change scenario)

  • 이주형;허준행;김기주;김영오
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.130-130
    • /
    • 2022
  • 기후변화로 인한 기상이변 현상으로 폭우와 홍수 등 수문학적 극치 사상의 출현 빈도가 잦아지고 있다. 따라서 이러한 기상이변 현상에 적응하기 위하여 보다 정확한 확률강우량 측정의 필요성이 증가하고 있다. 대장 지점의 미래 확률강우량 계산을 위해선 기후변화 시나리오의 비정상성을 고려해야 한다. 본 연구는 비정상적인 미래 기후에서 확률강우량이 어떻게 변화하는지 측정하는 것을 목표로 한다. Representative Concentration Pathway (RCP4.5)에 따른 우리나라의 확률강우량 계산에 인공신경망을 포함한 정상성, 비정상성 확률강우량 산정 모델들이 사용되었다. 지점빈도해석(AFA), 홍수지수법(IFM), 모분포홍수지수법(PIF), 인공신경망을 이용한 Quantile & Parameter regression technique(QRT & PRT)이 정상성 자료에 대해 확률강우량을 계산하는 모델로 사용되었으며, 비정상성 자료에 대해서는 비정상성 지점빈도해석(NS-AFA), 비정상성 홍수지수법(NS-IFM), 비정상성 모분포홍수지수법(NS-PIF), 인공신경망을 사용한 비정상성 Quantile & Parameter regression technique(NS-QRT & NS-PRT)이 사용되었다. Rescaled Akaike information criterion(rAIC)를 사용한 불확실성 분석과 적합도 검정을 통해서 generalized extreme value(GEV) 분포형 모델이 정상성 및 비정상성 확률강우량 산정에 가장 적합한 모델로 선정되었다. 이후, 관측자료가 GEV(0,0,0)을 따르고 시나리오 자료가 GEV(1,0,0)을 따르는 지점들을 선택하여 미래의 확률강우량 변화를 추정하였다. 각 빈도해석 모델들은 몬테카를로 시뮬레이션을 통해 bias, relative bias(Rbias), root mean square error(RMSE), relative root mean square error(RRMSE)를 바탕으로 측정하여 정확도를 계산하였으며 그 결과 QRT와 NS-QRT가 각각 정상성과 비정상성 자료로부터 가장 정확하게 확률강우량을 계산하였다. 본 연구를 통해 향후 기후변화의 영향으로 확률강우량이 증가할 것으로 예상되며, 비정상성을 고려한 빈도분석 또한 필요함을 제안하였다.

  • PDF

신경망 이론을 이용한 탄성파 주시 토모그래피의 연구 (Seismic Traveltime Tomography using Neural Network)

  • 김태연;윤왕중
    • 지구물리와물리탐사
    • /
    • 제2권4호
    • /
    • pp.167-173
    • /
    • 1999
  • 탄성파 토모그래피 중에서 많이 사용되는 2차원 시추공-시추공 주시 토모그래피는 파선각이 제한됨에 따라 분해능이 저하되므로, 본 논문에서는 감소된 분해능을 향상시키기 위한 방법들을 검토해 보았다. 토모그래피 역산 과정은 파선의 위치 및 주시에 대한 오차에 민감하므로 선형 주시 보간법을 사용하여 파선을 추적하였으며, 다른 파선 추적법들에 의한 역산결과와 비교하여 좋은 결과를 얻을 수 있었다. 반복적 비선형 역산 과정에 있어서, 파선경로의 추적에 소요되는 계산 시간을 줄이기 위해서 일정 계산과정 동안 선형성을 고려하였으며 그 결과 빠른 수렴을 얻을 수 있었다. 일반적으로 역산과정에서는 적절한 초기 모델의 선정이 계산 결과에 많은 영향을 미치므로, 인공 신경망을 이용하여 획득된 주시로부터 초기속도 모델을 계산하였다. 지구물리학에서 인공 신경망법으로 많이 쓰이는 다층 전향 신경망은 내재된 단점들 때문에 좋은 결과를 얻을 수 없었으므로, 본 연구에서는 GRNN신경망을 이용하였다. 인공 신경망으로부터 계산된 초기모델을 역산에 사용함으로써 분해능을 향상시킬 수 있었다. 그러나 파선 투과각이 넓은 경우나 탐사 대상체가 매우 복잡한 구조를 가지는 경우에는 초기모델이 역산결과에 큰 영향을 주지 않았다. 지구물리학적 토모그래피에서는 파선의 투과각이 제한을 받게되는 경우가 많으므로, 이럴 경우 인공 신경망을 이용하여 초기 모델값을 계산함으로써 역산 결과 생성되는 단면도의 분해능을 향상시킬 수 있다.

  • PDF