• Title/Summary/Keyword: Generalized Benders Decomposition

Search Result 5, Processing Time 0.021 seconds

Generalized Multicommodity Distribution System Design

  • Chen, Ju-Long;Morris, James-G.;Son, Ki-Hyoung
    • Management Science and Financial Engineering
    • /
    • v.5 no.2
    • /
    • pp.25-41
    • /
    • 1999
  • This paper generalizes the classic two-stage multicommodity distribution system design problem to the one that includes plant locations as well as distribution center locations. Accommodating plant location leads to subproblems which are mixed are mixed integer. Hence. no LP-type subproblems are avail-able, and therefore standard Benders decomposition no longer applies. We develop new solution method which combines an integer L-shaped method with Benders decomposition to suit the purpose, and pre-sent the test results.

  • PDF

A Fixed Priority Queue Median with Jockeying on a Network

  • Jung, Kyung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.1
    • /
    • pp.117-133
    • /
    • 1990
  • This paper is concerned with determining a minisum location with jockeying for a server on a probabilistic network in which each customer type enters the network system permitting with jockeying through a specified node and a nonpreemptive service policy is in effect. An algorithm to locate a single Fixed Priority Queue Median with Jockeying (FPQMJ) on acyclic networks is developed by using the Generalized Benders' Decomposition technique. The results are then extended to a general network.

  • PDF

A New Dispatch Scheduling Algorithm Applicable to Interconnected Regional Systems with Distributed Inter-temporal Optimal Power Flow (분산처리 최적조류계산 기반 연계계통 급전계획 알고리즘 개발)

  • Chung, Koo-Hyung;Kang, Dong-Joo;Kim, Bal-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1721-1730
    • /
    • 2007
  • SThis paper proposes a new dispatch scheduling algorithm in interconnected regional system operations. The dispatch scheduling formulated as mixed integer non-linear programming (MINLP) problem can efficiently be computed by generalized Benders decomposition (GBD) algorithm. GBD guarantees adequate computation speed and solution convergency since it decomposes a primal problem into a master problem and subproblems for simplicity. In addition, the inter-temporal optimal power flow (OPF) subproblem of the dispatch scheduling problem is comprised of various variables and constraints considering time-continuity and it makes the inter-temporal OPF complex due to increased dimensions of the optimization problem. In this paper, regional decomposition technique based on auxiliary problem principle (APP) algorithm is introduced to obtain efficient inter-temporal OPF solution through the parallel implementation. In addition, it can find the most economic dispatch schedule incorporating power transaction without private information open. Therefore, it can be expanded as an efficient dispatch scheduling model for interconnected system operation.

Constrained Multi-Area Dispatch Scheduling Algorithm with Regionally Distributed Optimal Power Flow Using Alternating Direction Method (ADM 기반 분산처리 최적조류계산을 이용한 다지역 제약급전계획 알고리즘)

  • Chung, Koo-Hyung;Kim, Bal-Ho;Lee, Jong-Joo;Kim, Hak-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • This paper proposes a constrained multi-area dispatch scheduling algorithm applicable to interconnected power system operations. The dispatch scheduling formulated as an MIP problem can be efficiently computed by GBD algorithm. GBD guarantees adequate computation speed and solution convergence by reducing the dimension of the dispatch scheduling problem. In addition, the regional decomposition technique based on ADM is introduced to obtain efficient inter-temporal OPF solution. It can find the most economic dispatch schedule incorporating power transactions without each regional utility's private information open.

Channel Assignment, Link Scheduling, Routing, and Rate Control for Multi-Channel Wireless Mesh Networks with Directional Antennas

  • Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.884-891
    • /
    • 2016
  • The wireless mesh network (WMN) has attracted significant interests as a broadband wireless network to provide ubiquitous wireless access for broadband services. Especially with incorporating multiple orthogonal channels and multiple directional antennas into the WMN, each node can communicate with its neighbor nodes simultaneously without interference between them. However, as we allow more freedom, we need a more sophisticated algorithm to fully utilize it and developing such an algorithm is not easy in general. In this paper, we study a joint channel assignment, link scheduling, routing, and rate control problem for the WMN with multiple orthogonal channels and multiple directional antennas. This problem is inherently hard to solve, since the problem is formulated as a mixed integer nonlinear problem (MINLP). However, despite of its inherent difficulty, we develop an algorithm to solve the problem by using the generalized Benders decomposition approach [2]. The simulation results show the proposed algorithm provides the optimal solution to maximize the network utility, which is defined as the sum of utilities of all sessions.