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ABSTRACT

This paper generalizes the classic two—stage multicommodity distribution system design problem to the
one that includes plant locations as well as distribution center locations. Accommodating plant location
leads to subproblems which are mixed integer. Hence, no LP—type duals of the subproblems are avail—
able, and therelore standard Benders decomposition no longer applies. We develop new solution method
which combines an integer Z—shaped method with Benders decomposition to suit the purpose, and pre—
sent the test results.

1. INTRODUCTION

Multicommodity distribution system considered in this paper can be summarized
as follows. There are several commodities which can be produced at several po-
tential plants. The demand of each commodity at each customer zone is known,
and 1s satisfied by shipping via regional distribution center (abbreviated DC). The
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maximum annual output of each commodity from each plant is given. Also known
are lower as well as upper bounds on the allowable total annual throughput for
each DC. Potential sites for the plants and DCs are also given, but the particular
locations to be used are to be selected within the model. The plant and DC costs
are based on fixed plus linear variable costs. Transportation costs are also as-
sumed to be linear. Thus the problem is to decide which plants and distribution
centers to use, how much of each commodity is to be produced at each selected plant,
what size of DC to have at each selected site, which customers are to be assigned to
which DCs, and which plants are to supply which commodities to which DCs. This
should be done so as to minimize total cost while honoring capacity constraints
and satisfying customer demands. There may be additional configuration con-
straints on the plants and distribution centers.

Formulation of the proposed model incorporates the following notation:

Cijr transportation cost per cwt for commodity f from plant j to DC &,

Xijp the amount of commodity I supplied from plant j to DC k&,

a; non-negative fixed cost of operating plant j per unit time,

b; binary variable that equals 1 if plant ; i1s opened, and 0 otherwise,

q; average variable cost per unit time to produce commodity i atplant j,

S;; amount of commodity Iproduced at plant J,

e non-negative fixed cost of operating DC %k per unit time,

2z binary variable that equals 1 if DC % is opened, and 0 otherwise,

Uy average variable cost per cwt of operating DC &,

D, customer ['s demand for commodity i,

Vi binary variable that equals 1 if the path from DC % to customer [ is
opened,

ini average unit cost of storing, processing and shipping commodity 7 from

DC E to customer I,
CH;; the maximum output capacity for commodity  atplant j per unit time,
Vi, the maximum total throughput at DC k per unit time,
VL, the maximum total throughput at DC £ per unit time.

The problem can now be formulated as follows. It is understood that all summa-

tions run over the allowable combinations of the indices,
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(P) Mn Z\\szk +Ug ZDilykl:| + > taa Dy + D ab; + D ass + ) cinin
] '

k ikl j ij ijk
s.t.
Zykl =1, for all 1 1)
[
VLkzk < Z‘Dilykl < VHka 5 for all k (2)
il
> xy <5y, for all i and j (3)
)
injk = ZDﬂykl: for all [ and k& 4)
J 1
Linear configuration constraints on y, z, and/or b (6)
bj, 2, and yp € {1}, for all j,k and I (7
855, %, 20 for all i,j and k& (8)

Constraint (1) specifies that each customer demand must be served by only one
DC. Besides keeping total throughput at DC % between minimum and maximum
allowed, constraint (2) also enforces the correct logical relation between ) and
z . Constraint (3) is a supply constraint for each commodity at each plant, con-
straint (4) requires that each customer's demand must be fully satisfied, and con-
straint (5) is to ensure that no commodity is to be supplied from a plant not cho-
sen for a plant location. Constraint (6) gives the model quite a lot of flexibility to
incorporate many practical consideration. For instance, one may extend this
model to allow expandable capacity limits on plants and DCs. The model makes
two assumptions; single sourcing and origin forgetting policy.

Single sourcing policy by constraint (1) requires that no customer zone is
allowed to deal with more than one DC. Geoffrion, Graves and Lee [9] reported
that this assumption is usually justified in practice, and tends to reduce small
shipment. Of course, relaxing this assumption converts each y, to a continuous
variable, making the problem much easier to solve. Another feature of the model
is origin-forgetting policy. Under this policy, commodities lose their identity when
transferred through DC points. Geoffrion and Graves [8] adopted origin-
remembering policy with quadruply subseripted transportation variables in their

model, citing practical needs and advantages in some situation over origin-
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forgetting policy. Elson [6] used origin-forgetting policy with triply subscripted
variables, employing separate transportation variables for plant-to-DC and DC-
to-customer links. Others with origin-forgetting policy includes Ellwein [5] and
Pooley [13]. Note that changing the policy to origin-remembering policy has no
significant impact on the problem (P) except increase in the number of transpor-
tation variables. Other important works in facility location and distribution sys-
tem design include Erlenkotter [7] and Bilde and Krarup [2] for simple uncapaci-
tated location model, Christofides and Beasley [4] and Van Roy [14] for capacitat-
ed warehouse location model, Warszawski [18] and Laundy [12] for multicom-
modity location model, and Elson [6] for multicommodity capacitated facility loca-
tion model. The structure of the paper is as follows. In Section 2, we briefly review

the integer L-shaped method. Section 3 focuses on application of the integer L-
shaped method to the problem (P), and develops how to generate continuous L-

shaped cuts. The algorithm to solve the problem (P) will be proposed. Computa-

tional results is reported in Section 4.

2. THE INTEGER L-SHAPED METHOD

A deterministic large-scale mathematical programming can be solved by a variety
of specialized approaches. These approaches typically use some forms. of decompo-
sition strategy such as Benders decomposition (Benders [1], Wets [16], Wets [17]),
Dantzig -Wolfe decomposition (Dantzig and Wolfe [3]), and the integer L-shaped
method (Laporte and Louveaux [10]). The scheme employed here is to combine
the integer L-shaped method with Benders decomposition to solve the problem
(P). Let us briefly summarize the integer L-shaped method. The object of the
integer L-shaped algorithm is to provide a decomposition of problem with first-
stage integer decision variables in a two-stage solution process. The main differ-
ence between the continuous L-shaped method by Van Slyke and Wets [15] and
the integer L-shaped method is the type of decision variables in the second stage.
The continuous L-shaped method restricts the second-stage variables to be con-
tinuous while the integer L-shaped method can accommodate second stage deci-
sion variables which are integer. Consider a two-stage mixed-integer linear pro-
gramming problem with fixed recourse which has the following form:
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Min Z=ag+qy+TQ()

st. Ag+By=b ©)]
yeYN{1}

,where TQ(y) = min {cxl Wx =h —Ty, some x € {O,l}},a, ¢,b, ¢, and h are known vectors,
A,B,W,and T are known matrices, and Y is the set defined by (9). It is as-
sumed that the problem is feasible and has a finite optimal value. Then, at a
given stage, so-called current problem is formed as:

Min ag+qy+40

st. Ag+By=b

D,y=d,, k=128, (10)
Ep,y+6 2e, k=1,2,-t, (11)
y20, ©6eR

, where D), E, are vectors, and d;, and e, are scalars to be generated. Constraints
(10) are referred to as feasibility cuts and constraints (11) are as optimality cuts. A set
of feasibility cuts is said to be valid if there exists some finite values s such that
yeY ifand only if {Dky 2d,, k=12 -~ s}. The method used to form the feasibility
cuts is same as that for Benders decomposition. Let ¢ be the finite number and let
Y= {y|y eYN {0, 1}} A set of t optimality cuts is said to be valid if for all
ye f’,(y,e) e {Eky +0 zey, k=12, t} implies 4 >2TQ(y). In order to derive op-
timality cuts for a two-stage problem in which some first-stage decision variables
are binary and some second-stage decision variables are binary, two assumptions

are required.

Assumption 1. Given binary first-stage vector of decision variables V, the function
TQ(y) is computable from y .

Assumption 2. There exists a finite value L satisfying L < min y {TQ( y)' y € I}} .

Now let y”"be the p' feasible solution generated by the integer L-shaped
method, and 7¢X(y”) be the corresponding second-stage objective value. Further,
let kleS,if yf =1, and let klg S, if y§;=0. Then the integer L-shaped opti-

mality cut can be formed as
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02(TQO™)-LN( Y. yu- Y ow)-TRUP)-L)(S,}-1)+L

kleS, kizS,

, where lS p( is the cardinality of set S,,. Note that the quantity (ZkleSp Vil _Zkkzs,, Vi) 18

always less than or equal to IS p]. It takes the value |S Pl only when V is the o
feasible solution. When (Z{ksp ykl—Z&ks,) ) 18 equal to \S pl, the right-hand side

takes the value TQ(y?). For othe;r ye Y , the right-hand side is less than or equal to
L . Therefore a set of valid cuts is obtained by imposing one such constraint for each
first-stage feasible solution ye Y. Then, the integer L-shaped method yields an
optimal solution of the original problem, if any, in a finite number of steps. This is
basically because the existence of a valid set of feasibility cuts and a valid set of
optimality cuts imply s and ¢ in (10) and (11) are finite. For further details of
the algorithm, we refer to Laporte and Louveaux [10] and Larporte, Louveaux,
and Hamme [11]. ‘

3. APPLICATION OF THE INTEGER L-SHAPED AND THE CONTINUOUS
L-SHAPED METHOD

The problem (P) is a large scale mixed integer problem, but has a special strue-
ture that enables it to be decomposed into distribution center location problem
and plant location problem with multicommodity flow.

For fixed y and 2z, the problem (P) can be reduced to
!
@) Min Y ajb;+ Y agSy+ Y cypdn
; i ijk

s.t.  (3),(4),(5), and (8)
Linear configuration constraints on b (12)
b; e {0,1} for all j

Hence problem (P) can be rewritten as an equivalent two-stage problem as below.

(OP)  Min Z[szk + UkZDilykl} + Dt Dy + Q)
k il

ikl
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st. (1), @)
Linear configuration constrains on y, and/or z (13)
2, Yu E{O,l} for all k and !

For notational simplicity, constraint (12) and (13) are not spelled out in detail. The
only requirement is that they be linear and do not involve x or s in (12), and no
b, s,or x variables in (13). These configuration constraints can make problem
(OP) or (@) infeasible. For the sake of simplicity, however, we drop the configura-

tion constraints in the following discussion. It is also assumed that
Z_ CH; > Z D; for each commodity I to prevent problem (Q)from being in-
j !

feasible. Before going further, let us first rewrite the problem (@) in a condensed

form. Nothing that kaijk= s;, one can remove the variable s from the model

and write a condensed model, which can be solved very efficiently. Combining (3)
and (5), the problem (@) can be rewritten as follows;

(EQ) Min ZanJ +Zcijkxijk
J

ijk

st (4)
injk ﬂCHUbJ R for all l and _]
X
b; {0,1}, for all i
Xy 20, for all i, j,and k

where Cyj, =gy +cy, forall i, j,and k. The problem (E) is equivalent to (@)
and can replace (@) for further discussion. Note that the problem (OP) can be decom-
posed into two partitions. The first is so-called current problem in the proposed problem,
to be defined later as problem (CP). It is a distribution center location problem with
deterministic demand. The second partition, to be called problem (E®) is a plant loca-
tion problem with multicommodity flow transportation problem constraints. Since the
problem (E@®) is a mixed integer linear problem, standard Benders optimality cut can
not be formed for problem (OP) . The strategy, therefore, employed here is to use the
integer L -shaped method with the Benders decomposition to solve problem (OP).
Note that problem (OP) satisfies the definitions and assumptions of the integer L -
shaped method, since the first-partition of problem (OP) is a pure binary problem and
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the second-partition, problem (EQ), is a mixed-integer programming problem. Further,
problem (EQ) is computable from y, and there is a lower bound L that can be easily
obtained. Hence, the integer L-shaped algorithm can be used to solve problem (OP) .

To derive (CP), let us first define the current problem (OCP) of (OP) at iteration
P as follows.

(OCP)  Min Z{szk + UkZDilykl} + Ztileilykl +¢

k i ikl

s.t. (1), (@)
Y 2, for all k and !
i) +Epy2ep,p =1,2,-., P (14)
6=1L, (15)
2., Yy € {0,1}, for all k and [

, Where EP is a vector, e, is a scalar and p is an index denothing the pth it-

eration. Constraint (14) fs an optimality cut produced by integer L -shaped
method. Let us first derive valid optimality cuts. Let »* be the value which cor-
responds to a value in z, say 2P, such that (y?,2?) is the p™ feasible solution
generated for problem (OCP). Let S, be a set of indices such that kle S, if
v =1 and kleS, if y;=0. EQ(y”) is optimal objective value of the problem
(EQ) with y”.Define optimality cut as

0 2(EQU") ~L)( T u .z i) = (EQ(Y") - L)(S,|-D+ L

The set of optimality cuts defined for all feasible solutions generated for problem
(OP) in y is a valid set of optimality cuts. This is because for all feasible solu-
tions of problem (OP) in y, wheny= y*, the right-hand side of the cut is equal

to EQ(y?) since the quantity Zkzesp Yy deleSp ¥y 18 equal to IS p| .When y=y?,
one can easily verify that the right-hand side of the cut is less than or equal to L.
In addition, the number of possible feasible values of y for problem (OP) is
finite. Therefore, 6 = EQ(y) for all feasible y when all the cuts constructed from
all possible values of feasible y arve added to the problem (OCP).
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To complete the discussion, we need to-compute a value for L in (15). Let G be
the feasible region of problem (OP). Then for all feasible solutions of problem
(OP) in y and z, L must be less than or equal to min yec EQ(y) . Define L,

as below.

L, = Min Zajbj
J

J

bje{O,l}. for all j

Then L, is the minimum of total fixed cost of opening plants to supply total de-

mands for all commodities.

Now let C; =min, Cy,. Then for any x, Zijkcijkxijk 2 Zi C; ijxijk , and for

any feasible solution x, ijijk = ZlDilykl . Therefore, defining

Ly =3 Ci Y Dy =2 C; Y Dy v = 2,Ci 2% < Conxi
i 1 i I k

i Jk ijk

and letting L =L, + L, can serve the purpose. Combining the results, we rewrite
master problem (CP) of (OP) as follows.

(CP) Min Zl:szk +Up ZDﬂykl :l + Ztikl‘Dilykl +6
il

k ikl

st. (1), (),
Yp1 = Zp, for all k and 1
02 (EQU™)-L)( Y, yu- 2.yu)—(EQW")-L)(S,|-D+L,
kleS, kleS,
p=12,,p
6=1,

24y € {01}, for all k and I
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Since the number of possible values of feasible solution of problem (OP) is finite,

when integer L-shaped optimality cuts are constructed for all feasible solutions of
problem (OP) in y, and added to problem (CP), the validity of the set of opti-
mality cuts implies that the optimal objective value of problem (OP) is equal to
problem (P). With integer L -shaped cut alone, however problem (CP) will
converge very slowly. This is because the optimality cut constructed by »? only
ensures that 8 > EQ(y”), where p=1,2,, P and y”is the optimal solution in
y of problem (CP) at the p'™ iteration. For y other than y?, these cuts only
make 6§ 2L —¢ with § 0. Hence, one may not be able to obtain good lower

bound at the early stage of the iteration. One way to provide richer information
on Y is to include continuous L -shaped cuts in (CP), derived from LP relaxa-

tion of EQ(y?).Let R(y?) be an LP relaxation of EQ(y?). The LP dual R(»?)
of problem R(y”) can be stated as:

R(y®) Max Y Dyyluy - >
iRl ;

s.t. - HU + Ulk < C"]k , for all i, j, and k
-n+CH;p; <aj, for all j

pz20m>0,and v free.

Hence, the continuous L-shaped cut takes the following form.

P P
= Z-Dilykluik “Z“ |
ikl j

|

where v} and » f’ are corresponding extreme point solution. Adding this cut, the
master problem (CP) atthe P™ iteration now becomes

(CP) Min Zl:szk + UkZDilykl} + D b Dy +0
7 9] ikl

s.t. (1), (@),
Ve =Zp, for all k and I

0 2 (EQU™)-L) Y. vy - om)—EQ?)-L)(S,|-1)+ L,

kleS, kS,
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p=12,-, P
2% Dyyuvh -2 77, p=12-P (16)
ikl j
6=1L,
2y, Y € {O,l}. for ¢ll %k and !

The algorithm is now presented helow.

Algorithm

Step 0. Set p=0, UB= «, choose ¢ 20, compute L, and store associated

b as the incumbent best plant location solution found.

Step 1. Solve the current problem (CP) by any integer programming code. If
the current problem (CP) is infeasible, stop. The original problem is in-
feasible. Otherwise, let (z?,y7,8%) be an optimal solution, and let Z7

be the optimal value.

Step 2. If Z?+ £>UB, stop. An ¢ -optimal solution has been found. Other-
wise, compute EQ(y*) and let zq” = ZP + EQ(y?)-0% . If 2q” <UB,
let UB =2zg® and store (z”,y*) as the incumbent best DC solution.

Step 3. If 07+ £ > EQ(y?), stop. The global optimal solution is reached. Oth-
erwise, add two new optimality cuts; one by the integer L -shaped cut, and
the other by continuous I -shaped method. Set p= p+1 and return to Step 1.

Solving problem (EQ) is not an easy task since it is a large scale mixed integer

programming problem. But for given »7, it is a classical capacitated plant location
problem. Furthermore, for fixed &;, it can be separated into as many independent

classical transportation problems as the number of commodities dealing with. Let
SP. denote the i transportation problem associated with commodity 7. Then,
SP, is an LP, and standard Benders decomposition scheme can be employed to
solve (EQ). We used Benders decomposition in our computational experiment
summarized in section 4. Detailed procedure is not shown here, however, since it is
a standard procedure. One final comment follows. One can improve the speed of
convergence using improved continuous L -shaped cuts. To generate improved cut,
suppose that we have optimal solution of EQ(y) at H® iteration. Then Benders
master problem (NMP) of (EQ) with integrality relaxed is as below.
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(NMP) Min Y ab;+y°

s.t. ZCHU ; ZZD for all i

¥ +ZU”CHubJ_ 2/1 ZDllykl, h=12. H

bJ— cfol], for all j

, where [, is the value obtained earlier. Note that (NA/P) provides a lower bound on
the optimal objective value of problem (E@Q). The dual of (NMP) takes the following

form:

Max ZDlla %;ﬂzkzl:Dlykl ﬂh+27’,+L177
L

s.t. ZCHUa "'Z”’u CH; By +y;j+am<a;, for all j

uh
Zﬁh <1,
h
a;. 7.8, 20, and r; 0.

Since the feasible region of the dual of (NMP) is independent of y and bone

can construct continuous cut based on the optimal extreme point of the dual as
follows.

6> Dya; - Z}’LkZDLl Y B +Z}’J + Ly a7
B

ikh

One can replace (16) with (17). |

4. COMPUTATIONAL RESULTS

The proposed algorithm was implemented in C on a SUN work station under
UNIX system. The algorithm uses CPLEX Mixed-Integer Callable Library to sol-
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ve the current problems, master problems of (EQ), and independent transporta-
tion problems. Problem files was first constructed in LINGO and then converted
to MPS format to fit into CPLEX. The optimal solutions obtained were verified by
CPLEX. The results were compared with those obtained by CPLEX. As for the
test problem, no standard test data are available for this generalized multicom-
modity distribution system design problem. We, therefore, have generated the
problems from U.S. road map by randomly selecting 70 cities for possible dis-
tribution locations and 40 cities for customer zones. Then, 15 cities for possible
plant sites were also selected at random from distribution center locations. The
distances between plant sites and DCs and between DCs and customer zones
were calculated. The transportation cost file was generated assuming $0.5 per
mile for one gross ewt. The customer demand data file for each commodity was
generated according to a uniform distribution with a specified range. The same
method was used for generating the fixed cost data file, the variable operating
cost data file for each DC, the maximum capacity limit data file on DCs and plan-
ts with minimum of zero for simplicity, and the production cost data file for each
plant. The number of plant sites, DC sites, customer zones, commodities, and the
actual number of variables for each test problems are shown in Table 1. For all
testing problems, we adopted a dense network approach in which all possible
paths between the DC sites and customer zones are included. This may not be
necessary in a practical setting since some path variables can be dropped from
consideration through pre-processing. Note that the proposed algorithm is not
very much sensitive to the increase in the number of DC sites, plants, or com-
modities. Table 2 shows computational vesults for 3 test problems. Suboptimality
tolerance was set to 0.001 for Testl and Test3, and 0.003 for Test2. The proposed
algorithm tends to perform only slightly better than CPLEX in terms of speed.
But, when the quality of the upper bound is concerned, it provides clear advanta-
ge over CPLEX. We have also studied the impact of changes in transportation
costs, fixed costs, and capacity limits respectively. The results are summarized in
Table 3 and Table 4. Last two digits in test problem names vepresent inflation
factors. For instance, test1t12 has transportation costs of 1.2 times those used in
the basis problem testl, and test2f05 has fixed costs of .5 times those used in
test2. For testlep, test2ep, and test3ep, maximum capacity limit of 1.1 times tho-
se used in the basis problem were assigned. From Table 3, we find impact of
changes in relative magnitude of transportation costs or fixed costs is problem
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specific, and that no regularity can be established to predict how the solution
times would be affected with respect to those changes. The same goes to the
changes in capacity limits. Table 4 shows that loosening capacity lunits has mixed
effect in terms of CPU time. We also tested the algorithm with improved L -
shaped continuous cut (14) added to (CP), and found that improved cut can sig-
nificantly improve the speed of convergence as shown in Table 5. One final re-
mark follows. In order to verify that the proposed algorithm can solve a larger
size problem than CPLEX does, we constructed a problem with 15 plant sites, 20
DC sites, 25 customer zones, and 50 commodities. It has 535 integer variables
and 15000 continuous variables. The ¢ -optimal solution with ¢ = 0.001 was not
reported after 2 hours by CPLEX whereas proposed algorithm reported the solu-

tion in 254.1 seconds.

Table 1. Description of the test problems

No. of No. of No. of No. of No. of No. of No. of
Plant sites | DC sites customers | Commodities | integerv. | continuousv. | Constraints
Testl 5 10 15 20 165 1000 485
Test2 10 15 20 20 325 3000 750
Test3 15 20 25 20 535 6000 965
Table 2. Copmarison of the test results
Opfimal Value or No.of main itera- L
Solver ‘ ) Time in second
Upper Bound tion
CPLEX ' 3909049 1169 29.52
Test 1
Proposed 3907337 4 21.80
CPLEX 3925030 2113 76.18
Test 2
Proposed 3924174 6 69.3
CPLEX 7197526 4119 193.86
Test 3
Proposed 7181037 5 120.90
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Table 3. Effect of change in transportation costs

39

Problem ID Nc?. of 'main time in Problem 1D No‘. of 'rnain Time in
1teration second iteration Second
Test1t08 3 17.4 Test1f05 4 14.7
Testl1t12 8 45.7 Test1fl5 3 21.9
Test2t08 9 137.2 Test2{05 44 50.3
Test2t12 5 55.2 Test2f15 6 3247.4
Test3t08 4 99.0 Test3f05 3 59.8
Test3t12 6 138.1 Test315 4 574
Table 4. Effect of change in capacity limits
Problem ID No. of main iteration Time in second
Test 1 4 21.8
Testlcp 7 329
Test 2 6 69.3
Test2cp 5 65.0
Test 3 5 120.9
Testdep | 4 68.0
Table 5. Computational results with improved continuous cuts
Suboptimality Optimal Time Time with
tolerance Objective value old cuts
Testl 0.001 3907337 16.0 21.8
Test2 0.002 3924174 140.8 193.6
Test3 0.001 7181037 69.5 120.9
Test2f15 0.003 3972948 1537.5 3247.4
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