• Title/Summary/Keyword: General tensor

Search Result 71, Processing Time 0.026 seconds

CONFORMALLY RECURRENT SPACE-TIMES ADMITTING A PROPER CONFORMAL VECTOR FIELD

  • De, Uday Chand;Mantica, Carlo Alberto
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.319-329
    • /
    • 2014
  • In this paper we study the properties of conformally recurrent pseudo Riemannian manifolds admitting a proper conformal vector field with respect to the scalar field ${\sigma}$, focusing particularly on the 4-dimensional Lorentzian case. Some general properties already proven by one of the present authors for pseudo conformally symmetric manifolds endowed with a conformal vector field are proven also in the case, and some new others are stated. Moreover interesting results are pointed out; for example, it is proven that the Ricci tensor under certain conditions is Weyl compatible: this notion was recently introduced and investigated by one of the present authors. Further we study conformally recurrent 4-dimensional Lorentzian manifolds (space-times) admitting a conformal vector field: it is proven that the covector ${\sigma}_j$ is null and unique up to scaling; moreover it is shown that the same vector is an eigenvector of the Ricci tensor. Finally, it is stated that such space-time is of Petrov type N with respect to ${\sigma}_j$.

Time Series Classification of Cryptocurrency Price Trend Based on a Recurrent LSTM Neural Network

  • Kwon, Do-Hyung;Kim, Ju-Bong;Heo, Ju-Sung;Kim, Chan-Myung;Han, Youn-Hee
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.694-706
    • /
    • 2019
  • In this study, we applied the long short-term memory (LSTM) model to classify the cryptocurrency price time series. We collected historic cryptocurrency price time series data and preprocessed them in order to make them clean for use as train and target data. After such preprocessing, the price time series data were systematically encoded into the three-dimensional price tensor representing the past price changes of cryptocurrencies. We also presented our LSTM model structure as well as how to use such price tensor as input data of the LSTM model. In particular, a grid search-based k-fold cross-validation technique was applied to find the most suitable LSTM model parameters. Lastly, through the comparison of the f1-score values, our study showed that the LSTM model outperforms the gradient boosting model, a general machine learning model known to have relatively good prediction performance, for the time series classification of the cryptocurrency price trend. With the LSTM model, we got a performance improvement of about 7% compared to using the GB model.

Injury of the Thalamocortical Pathway Between the Mediodorsal Nuclei and the Prefrontal Cortex in a Patient with Traumatic Brain Injury

  • Sang Seok Yeo
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.6
    • /
    • pp.190-194
    • /
    • 2023
  • Purpose: Traumatic brain injury (TBI) refers to brain damage caused by external forces or trauma. TBIs can vary in severity and result from accidents, falls, sports injuries, assaults, or other forms of physical trauma. The prefrontal cortex (PFC) is known have roles in various cognitive functions. We report on a patient with traumatic brain injury who showed prefrontal symptoms after injury of thalamocortical connections between mediodorsal nuclei (MD) of thalamus and PFC. Methods: A 54-year-old, male patient suffered a TBI as a result of a heavy object falling on his head. After onset of TBI, he showed typical symptoms of prefrontal lobe injury, including personality changes, memory impairment, and general cognition problem. The thalamocortical connections between MD and PFC (ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), and obrbitofrontal cortex (OFC)) were reconstructed using diffusion tensor tractography. In terms of fractional anisotropy value, the right thalamocortical connections to the OFC were significantly lower than those of control subjects. Results: The value of mean diffusivity in the right thalamocortical connections to the DLPFC was significantly higher than that of control subjects. By contrast, both VLPFC and left OFC showed significant decrement in the tract volume of thalamocortical connections compared with that of control subjects. Conclusion: We reported on a patient who showed cognitive and neuropsychiatric impairment due to global injury of the thalamocoritcal connections between MD and PFC following TBI.

An Updated Review of Magnetic Resonance Neurography for Plexus Imaging

  • Joon-Yong Jung;Yenpo Lin;John A Carrino
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1114-1130
    • /
    • 2023
  • Magnetic resonance neurography (MRN) is increasingly used to visualize peripheral nerves in vivo. However, the implementation and interpretation of MRN in the brachial and lumbosacral plexi are challenging because of the anatomical complexity and technical limitations. The purpose of this article was to review the clinical context of MRN, describe advanced magnetic resonance (MR) techniques for plexus imaging, and list the general categories of utility of MRN with pertinent imaging examples. The selection and optimization of MR sequences are centered on the homogeneous suppression of fat and blood vessels while enhancing the visibility of the plexus and its branches. Standard 2D fast spin-echo sequences are essential to assess morphology and signal intensity of nerves. Moreover, nerve-selective 3D isotropic images allow improved visualization of nerves and multiplanar reconstruction along their course. Diffusion-weighted and diffusion-tensor images offer microscopic and functional insights into peripheral nerves. The interpretation of MRN in the brachial and lumbosacral plexi should be based on a thorough understanding of their anatomy and pathophysiology. Anatomical landmarks assist in identifying brachial and lumbosacral plexus components of interest. Thus, understanding the varying patterns of nerve abnormalities facilitates the interpretation of aberrant findings.

GENERAL RELATIVISTIC RADIATION HYDRODYNAMICS: FREQUENCY-INTEGRATED RADIATION MOMENT FORMALISM

  • Park, Myeong-Gu
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.4
    • /
    • pp.101-110
    • /
    • 2012
  • I present here one approach to general relativistic radiation hydrodynamics. It is based on covariant tensor conservation equations and considers only the frequency-integrated total energy and momentum exchange between matter and the radiation field. It is also a mixed-frame formalism in the sense that, the interaction between radiation and matter is described with quantities in the comoving frame in which the interaction is often symmetric in angle while the radiation energy and momentum equations are expressed in the fixed frame quantities in which the derivatives are simpler. Hence, this approach is intuitive enough to be applied straightforwardly to any spacetime or coordinate. A few examples are provided along with caveats in this formalism.

Spatial Distribution Functions of Strength Parameters for Simulation of Strength Anisotropy in Transversely Isotropic Rock (횡등방성 암석의 강도 이방성 모사를 위한 강도정수 공간분포함수)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • This study suggests three spatial distribution functions of strength parameters, which can be adopted in the derivation of failure conditions for transversely isotropic rocks. All three proposed functions, which are the oblate spheroidal function, the exponential function, and the function based on the directional projection of the strength parameter tensor, consist of two model parameters. With assumption that the cohesion and friction angle can be described by the proposed distribution functions, the transversely isotropic Mohr-Coulomb criterion is formulated and used as a failure condition in the simulation of the conventional triaxial tests. The simulation results confirm that the failure criteria incorporating the proposed distribution functions could reproduce the general trend in the variations of the axial stress at failure and the directions of failure planes with varying inclination of the weankness planes and confining pressure. Among three distribution functions, the function based on the directional projection of the strength parameter tensor yields the highest axial strength, while the axial strength estimated by the oblate spheroidal distribution function is the lowest.

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites with Multiple Delamination (다중 층간 분리부가 내재된 복합재 쉘 고차 지그재그 모델의 유한요소 해석)

  • 오진호;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.229-236
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection. which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the buckling problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The accuracy of the present element is demonstrated in the prediction of buckling loads and buckling modes of shells with multiple delaminations. The present shell element should serve as a powerful tool in the prediction of buckling loads and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites Cylinderical Shell with Multiple Delaminations (다중 층간분리부가 있는 복합재 원통쉘의 지그재그 고차이론에 기초한 유한요소 진동해석)

  • Cho Maenghyo;Oh Jinho;Kim Heung-Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.69-72
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection, which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the eigenvalue problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The present shell element should serve as a powerful tool in the prediction of natural frequency and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

Efficient 3D Geometric Structure Inference and Modeling for Tensor Voting based Region Segmentation (효과적인 3차원 기하학적 구조 추정 및 모델링을 위한 텐서 보팅 기반 영역 분할)

  • Kim, Sang-Kyoon;Park, Soon-Young;Park, Jong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.10-17
    • /
    • 2012
  • In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. In this paper, we propose a method for creating 3D virtual scenes based on 2D image that is completely automatic and requires only a single scene as input data. The proposed method is similar to the creation of a pop-up illustration in a children's book. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting to an image segmentation. The tensor voting is used based on the fact that homogeneous region in an image is usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. And then, our algorithm labels regions of the input image into coarse categories: "ground", "sky", and "vertical". These labels are then used to "cut and fold" the image into a pop-up model using a set of simple assumptions. The experimental results show that our method successfully segments coarse regions in many complex natural scene images and can create a 3D pop-up model to infer the structure information based on the segmented region information.

Software development for the visualization of brain fiber tract by using 24-bit color coding in diffusion tensor image

  • Oh, Jung-Su;Song, In-Chan;Ik hwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.133-133
    • /
    • 2002
  • Purpose: The purpose of paper is to implement software to visualize brain fiber tract using a 24-bit color coding scheme and to test its feasibility. Materials and Methods: MR imaging was performed on GE 1.5 T Signa scanner. For diffusion tensor image, we used a single shot spin-echo EPI sequence with 7 non-colinear pulsed-field gradient directions: (x, y, z):(1,1,0),(-1,1,0),(1,0,1),(-1,0,1),(0,1,1),(0,1,-1) and without diffusion gradient. B-factor was 500 sec/$\textrm{mm}^2$. Acquisition parameters are as follows: TUTE=10000ms/99ms, FOV=240mm, matrix=128${\times}$128, slice thickness/gap=6mm/0mm, total slice number=30. Subjects consisted of 10 normal young volunteers (age:21∼26 yrs, 5 men, 5 women). All DTI images were smoothed with Gaussian kernel with the FWHM of 2 pixels. Color coding schemes for visualization of directional information was as follows. HSV(Hue, Saturation, Value) color system is appropriate for assigning RGB(Red, Green, and Blue) value for every different directions because of its volumetric directional expression. Each of HSV are assigned due to (r,$\theta$,${\Phi}$) in spherical coordinate. HSV calculated by this way can be transformed into RGB color system by general HSV to RGB conversion formula. Symmetry schemes: It is natural to code the antipodal direction to be same color(antipodal symmetry). So even with no symmetry scheme, the antipodal symmetry must be included. With no symmetry scheme, we can assign every different colors for every different orientation.(H =${\Phi}$, S=2$\theta$/$\pi$, V=λw, where λw is anisotropy). But that may assign very discontinuous color even between adjacent yokels. On the other hand, Full symmetry or absolute value scheme includes symmetry for 180$^{\circ}$ rotation about xy-plane of color coordinate (rotational symmetry) and for both hemisphere (mirror symmetry). In absolute value scheme, each of RGB value can be expressed as follows. R=λw|Vx|, G=λw|Vy|, B=λw|Vz|, where (Vx, Vy, Vz) is eigenvector corresponding to the largest eigenvalue of diffusion tensor. With applying full symmetry or absolute value scheme, we can get more continuous color coding at the expense of coding same color for symmetric direction. For better visualization of fiber tract directions, Gamma and brightness correction had done. All of these implementations were done on the IDL 5.4 platform.

  • PDF