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ABSTRACT

I present here one approach to general relativistic radiation hydrodynamics. It is based on covariant
tensor conservation equations and considers only the frequency-integrated total energy and momentum
exchange between matter and the radiation field. It is also a mixed-frame formalism in the sense that,
the interaction between radiation and matter is described with quantities in the comoving frame in
which the interaction is often symmetric in angle while the radiation energy and momentum equations
are expressed in the fixed frame quantities in which the derivatives are simpler. Hence, this approach
is intuitive enough to be applied straightforwardly to any spacetime or coordinate. A few examples are
provided along with caveats in this formalism.
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1. INTRODUCTION

There is an increasing need for a correct treatment
of matter and radiation that are interacting with each
other, in general relativistic regime. Astronomical ob-
jects such as gamma-ray bursts, supernovae, neutron
stars, stellar or supermassive black holes, are expected
to involve interactions between high-velocity matter
and strong radiation field under strong gravity.

Particles in astrophysical matter generally have ei-
ther very short mean free paths to the collision or be-
have as such due to strong coupling with the magnetic
field. The physical properties of the matter, therefore,
can generally be described by ideal hydrodynamics and
their thermal or statistical properties can also be easily
specified. Photons, however, can have either short or
long mean free paths against matter particles. When
the mean free path is short, photons assume approx-
imately isotropic distribution and diffuse out through
the matter, which can be relatively easily described.
When the mean free path is long, photons may as-
sume highly anisotropic distribution and interact di-
rectly with particles far away. Therefore, correct de-
scription of radiation should contain the information
on directional distribution as well as the total energy
and the spectral distribution, which makes solving the
radiative transfer equation highly non-trivial and diffi-
cult. Yet, radiative transfer for a medium that is mini-
mally affected by the radiative force and energy is still
manageable. But when the dynamics and energetics
of matter are significantly affected by the radiation it-
self, such as in accretion flows or jets, radiative transfer
becomes even more difficult.

It gets worse in relativisic situations: photons get
red- or blue-shifted, length and time depend on the

fiducial frame chosen, radiation suffers relativistic beam-
ing and various relativistic corrections, such as bulk
Comptonizaton, become important. Gravity adds ad-
ditional difficulties: photon trajectories become curved
and their frequencies are not conserved anymore ow-
ing to the gravitational redshift, time runs differently
depending on the position, photons suffer a loss cone
effect or Penrose process around black holes. These rel-
ativistic effects may be added to the non-relativistic ra-
diative transfer formalism as additional perturbations.
However, this can cause confusion and inconsistency at
times when other effects of similar order are not prop-
erly taken into account or when the effects are applied
inconsistently. The best approach, naturally, would be
using full general relativistic formalism.

Solving the full frequency- and angle-dependent ra-
diative transfer equation would be most desirable,
but it is a formidable task, especially in a curved
spacetime. A more manageable approach is to use
frequency-integrated radiation moments. Frequency-
integrated radiation moments constitute the covariant
stress-energy tensor, and can be easily incorporated
into the covariant equations. The first relativistic ra-
diation moment equations were derived by Lindquist
(1966) for spherically symmetric diffusion regime. The
most general and complete radiation moment equations
were obtained by Thorne (1981) using projected sym-
metric trace-free tensor formalism. It was built within
the comoving frame in which matters are at rest and
has been applied to one-dimensional problems (Tur-
oalla & Nobili 1988; Zampieri et al. 1993). However,
since the velocity of matter depends on the temporal
and spatial positions, the covariant derivatives become
complicated. The derivatives become simpler in the
fixed frame while the interaction of radiation and mat-
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ter become simpler in the comoving frame. It is pos-
sible to utilize both frames: interaction terms are de-
scribed by comoving quantities while the derivatives
are applied to the fixed-frame quantities. This is called
mixed frame formalism (Mihalas & Mihalas 1984). I
have generalized this mixed frame approach to general
relativistic regime and applied to spherically symmet-
ric (Park 1990, 1993) and axisymmetric accretion flows
(Park 2006b). It has further been applied to arbitrary
flows in the Schwarzschild spacetime (Park 2006a) and
in the Kerr spacetime (Takahashi 2007, 2008). This
mixed-frame, frequency-integrated radiation moment
formalism can be easily applied to any coordinate sys-
tem because it is based on covariant tensor equations,
as has been emphasized in Park (1993, 2006a). In this
review, I will explain how this formalism is built and
show how to apply it to specific coordinate systems.
The limitations and caveats of this formalism will also
be noted. Throughout this paper, the velocity of light
c is chosen to be unity.

2. TENSOR CONSERVATION EQUATIONS

The energy-momentum tensor of matter that is ap-
proximated by an ideal gas is

T αβ
≡ ωgU

αUβ + Pgg
αβ, (1)

where Uα is the four-velocity of the gas and ωg ≡ εg +
Pg the gas enthalpy per unit proper volume which is the
sum of the gas energy density εg and the gas pressure
Pg. The enthalpy of the gas is a function of the gas
temperature and density whose exact dependence on
the temperature T in transrelativistic regime is rather
complicated (Service 1986).

A similar tensor for radiation, called the radiation
stress tensor, can be constructed,

Rαβ =

∫ ∫

I(n, ν)nαnβdνdΩ, (2)

where nα
≡ pα/hν with pα is the four-momentum of

photons and I(xα;n, ν) the specific intensity of pho-
tons moving in direction n on the unit sphere of the
projected tangent space with the frequency ν measured
by the fiducial observer. The photon distribution func-
tion, which is the analogue of the velocity distribution
function of the particles, is equal to c2h−4ν−3Iν and the
Lorentz invariant, i.e., the invariant intensity ν−3Iν re-
mains the same regardless of the frame in which it is
measured (Mihalas & Mihalas 1984; see also Chan 2011
for general construction of the radiation moment tensor
from the photon distribution function).

In relativity, the mass density reflects the internal
energy as well the rest mass-energy density. Since the
internal energy can change by heating, cooling, com-
pressing, and decompressing, the particle number den-
sity rather than the mass density is conserved. The
conservation of particle number density is given by the

continuity equation,

(nUα);α = 0, (3)

where n is the proper number density of the matter
and Uα the four-velocity of the matter.

The conservation of energy and momentum of mat-
ter and radiation is expressed by the conservation of
the energy-momentum tensor of matter and radiation
combined:

(

T αβ + Rαβ
)

;β
= 0. (4)

When radiation is in thermal equilibrium, it can be
described simply by the temperature of the matter. In
such a special case, no more equations for radiative
transfer are required.

In general, however, radiation field is not in thermal
equilibrium, i.e., blackbody, and the four-force density
that describes the interaction between radiation and
matter is defined (Mihalas & Mihalas 1984):

Gα
≡

∫

dν

∫

dΩ[χI(n, ν) − η]nα. (5)

The absorption and scattering of photons by matter
particles are described by the opacity per unit proper
length, χ, and the emission of photons by matter the
emissivity per proper unit volume, η.

Eq. 4 can now be split into two separate conserva-
tion equations: one for the matter energy-momentum
tensor

T αβ
;β = Gα, (6)

and the other for the radiation stress-energy tensor,

Rαβ
;β = −Gα. (7)

We need to remember that a simple conservation law
exists for the radiation stress tensor because all ra-
diation quantities are frequency integrated quantities.
We cannot define similar frequency-specific radiation
stress-energy tensor because they will not be covari-
ant. We obtain the covariance by sacrificing frequency
information.

3. RADIATION MOMENTS AND TETRADS

In a flat spacetime, the time-time components of the
radiation stress tensor Rtt are called the radiation en-
ergy density E, the time-space components Rti, the ra-
diation flux F i, and the space-space components Rij ,
the radiation pressure tensor P ij , with i, j = 1, 2, 3.
These three are the main radiation moments, i.e., mo-
ments in angle, that are widely used in astrophysical
radiative transfer and radiation hydrodynamics. These
definitions can be extended to any tetrad: for any fidu-
cial tetrad, we can define

E =

∫ ∫

IνdνdΩ,
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F i =

∫ ∫

IνnîdνdΩ, (8)

P ij =

∫ ∫

IνnînĵdνdΩ,

where nî is the spatial tetrad component of nα and ν
and Ω are the frequency and solid angle measured by
the fiducial observer of the tetrad. In terms of these
radiation moments, the tetrad components of the radi-
ation stress tensor for a given fiducial tetrad are simply

Rα̂β̂ =







E F 1 F 2 F 3

F 1 P 11 P 12 P 13

F 2 P 21 P 22 P 23

F 3 P 31 P 32 P 33






. (9)

For a given spacetime, the two most useful tetrads are
the fixed tetrad that is fixed with respect to the cho-
sen coordinate system and the comoving frame that is
comoving with the matter flow, and therefore at rest
with respect to the matter flow. The derivatives of ra-
diation quantities are simple to calculate in the fixed
frame while the matter-radiation interaction is easily
described in the comoving frame. The comoving tetrad
is moving with respect to the fixed tetrad with a proper
three-velocity

vi = vi =
U î

U t̂
=

Uαeî
α

−Uαet̂
α

, (10)

where U î and U t̂ are the spatial and temporal parts of
the fixed tetrad components of the four-velocity of the
matter flow, Uα, and eβ̂

α is the coordinate components

of the fixed tetrad base. From this, we define the energy
parameter

y ≡ −Ut (11)

and the Lorentz factor between the fixed frame and the
comoving frame

γ ≡ (1 − v2)−1/2 (12)

where v2 = v · v =
∑3

i=1 viv
i.

We denote the bases of the fixed tetrad as ∂/∂xα̂
fx

and those of the comoving tetrad as ∂/∂xα̂
co. Since

tetrads are locally inertial frames, they are related to
each other by Lorentz transformation:

∂

∂xα̂
co

= Λβ̂
α̂

∂

∂xβ̂
fx

, (13)

where

Λt̂
t̂ = γ, Λî

t̂ = γvi, Λt̂
ĵ = γvj , (14)

Λî
ĵ = δi

j + vivj
γ − 1

v2
.

Since Rα̂β̂ is Lorentz tensor, the fixed-tetrad com-

ponents Rα̂β̂
fx and the comoving-tetrad components are

related by the Lorentz transformation:

Rα̂β̂
co =

∂xα̂
co

∂xµ̂
fx

∂xβ̂
co

∂xν̂
fx

Rµ̂ν̂
fx = Λα̂

µ̂(−v)Λβ̂
ν̂(−v)Rµ̂ν̂

fx, (15)

where Λ(−v) is the inverse of the Lorentz transforma-
tion (14). This leads to the transformation law between
radiation moments in comoving and fixed frames (Mi-
halas & Mihalas 1984; Munier & Weaver 1986; Park
1993):

Eco = γ2
[

Efx − 2viF
i
fx + vivjP

ij
fx

]

F i
co =

[

δi
j + (

γ − 1

v2
+ γ2)vivj

]

F i
fx − γ2viEfx

−γvj

[

δi
k +

γ − 1

v2
vivk

]

P ij
fx (16)

P ij
co = γ2vivjEfx

−γ

[

viδj
k + vjδi

k + 2
γ − 1

v2
vivjvk

]

F i
fx

+(δi
k +

γ − 1

v2
vivk)(δj

k +
γ − 1

v2
vjvl)P

ij
fx.

Since the contravariant components of the radiation
stress tensor are related to any tetrad components by

Rαβ =
∂xα

∂xµ̂

∂xβ

∂xν̂
Rµ̂ν̂ , (17)

and the fixed tetrad components to the comoving com-
ponents by Eq. 15, the contravariant components of
the radiation stress tensor Rαβ can be written in terms
of the fixed-frame radiation moments, Efx, F i

fx, P ij
fx,

or the comoving-frame radiation moments, Eco, F i
co,

P ij
co , as needed.

4. INTERACTION BETWEEN MATTER AND
RADIATION

The tetrad components of the radiation four-force
density for the comoving frame are

Gα̂
co =

∫

dνco

∫

dΩco[χcoIνco
− ηco]n

α̂
co. (18)

In most astrophysical situations, absorption, emission,
and scattering are isotropic or effectively isotropic in

the comoving frame, and the energy exchange rate Gt̂
co

is simply the heating function Γco minus the cooling
function Λco, both per unit proper volume:

Gt̂
co = Γco − Λco (19)
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where

Γco ≡

∫

dνco

∫

dΩcoκcoIνco
, (20)

Λco ≡

∫

dνco

∫

dΩcoηco, (21)

and κco is the true absorption coefficient.

The momentum exchange rate per unit proper vol-
ume is

Gî
co = χ̄coF

i
co, (22)

where

χ̄coF
i
co ≡

∫

dνco

∫

dΩcoχcoIνco
ni

co. (23)

Using the transformation between two tetrads (Eq.
13), the fixed-frame components Gα̂

fx can be calculated,
and the coordinate transformation between the tetrad
∂/xα̂

fx and the coordinate ∂/xα
fx enables to express the

covariant vector Gα in terms of Gα̂
co,

Gα =
∂xα

∂xµ̂
co

Gµ̂ν̂
co . (24)

Therefore, if we can specify the heating and cooling
functions, i.e., Γco and Λco, and the mean opacity, χ̄co,
as functions of density and temperature of matter, the
interaction between matter and radiation can be de-
termined. In reality however, the opacity χco is often
a function of photon frequency and the mean opacity
and heating function can be accurately specified only
when the specific radiation energy density, Eν,co, and
flux, Fν,co, are known. This is a fundamental diffi-
culty of frequency-integrated radiation moment formal-
ism. To overcome this difficulty, one may make an edu-
cated guess for the radiation spectrum or perform iter-
ative frequency-specific radiative transfer calculations
in-between the radiation hydrodynamic calculations.

5. HYDRODYNAMIC EQUATIONS

If we define a projection tensor

Pα
β = gα

β + UαUβ = δα
β + UαUβ , (25)

relativistic Euler equation can be obtained by project-
ing Eq. 6 with Pα

β to get Pβ
αT βλ

;λ = Pβ
αGβ , which

becomes the covariant relativistic Euler equation:

ωgU
α

;βUβ + gαβPg,β + UαUβPg,β = Gα + UαUβGβ .
(26)

Since the interaction between radiation and matter be-
comes simpler, i.e., more symmetric, in the comoving
frame, it is more convenient to express Gα in terms of

comoving tetrad components Gt̂
co (Eqs. 19 and 22).

The energy equation for the matter is obtained by
projecting equation (6) along the four-velocity, i.e.,
UαT αβ

;β = UαGα:

−nU t ∂

∂t

(ωg

n

)

− nU i ∂

∂xi

(ωg

n

)

+U t ∂Pg

∂t
+ U i ∂Pg

∂xi
(27)

= UtG
t + UiG

i = −Gt̂
co = Γco − Λco.

6. RADIATION MOMENT EQUATIONS

The other half of the radiation hydrodynamic equa-
tions are the radiation moment equations (Eq. 7).
Choosing α = t gives the radiation energy equation and
the rest, α = 1, 2, 3, the radiation momentum equation
in each spatial direction. The left-hand side consists
of the radiation moments in the fixed-frame and their
coordinate derivatives while the right-hand side may
be expressed with the comoving radiation moments,
which simplifies the description of the matter-radiation
interaction. Unlike the hydrodynamic equations, radia-
tion moments equations become simpler in terms of the
fixed-frame radiation moments because the derivatives
appear simpler in the fixed frame.

To apply these hydrodynamic and radiation moment
equations to a specific spacetime, all we need is the
spacetime metric and the transformation rules among
the coordinate frame and the two tetrad frames.

7. CYLINDRICALLY SYMMETRIC FLOW
IN A FLAT SPACETIME

Many astrophysical systems are believed to have
cylindrical symmetry. Rotating accretion flow, i.e., ac-
cretion disc, is one important example. For the cylin-
drical flat spacetime metric

dτ2 = −gαβdxαdxβ

= dt2 − dR2
− R2dθ2

− dz2, (28)

the fixed tetrad bases are simply

∂

∂t̂
=

∂

∂t
,

∂

∂R̂
=

∂

∂R
,

∂

∂θ̂
=

1

R

∂

∂θ
,

∂

∂ẑ
=

∂

∂z
. (29)

The comoving tetrad, ∂/∂xα̂
co = Λβ̂

α̂(v)∂/∂xβ̂ , is then
given as (Park 2006b)

∂

∂t̂co

= γ
∂

∂t
+ γvR ∂

∂R
+ γvθ 1

R

∂

∂θ
+ γvz ∂

∂z

∂

∂R̂co

= γvR ∂

∂t
+

[

1 + (γ − 1)
vRvR

v2

]

∂

∂R

+ (γ − 1)
vRvθ

v2

1

R

∂

∂θ
+ (γ − 1)

vRvz

v2

∂

∂z

∂

∂θ̂co

= γvθ ∂

∂t
+ (γ − 1)

vθvR

v2

∂

∂R
(30)
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+

[

1 + (γ − 1)
vθvθ

v2

]

1

R

∂

∂θ
+ (γ − 1)

vθvz

v2

∂

∂z

∂

∂ẑco
= γvz ∂

∂t
+ (γ − 1)

vzvR

v2

∂

∂R

+ (γ − 1)
vzvθ

v2

1

R

∂

∂θ
+

[

1 + (γ − 1)
vzvz

v2

]

∂

∂z
.

From these, we can write the contravariant radiation
stress tensor Rαβ in terms of the fixed- and comoving-
frame radiation moments,

Rαβ =









Efx FR
fx R−1F θ

fx F z
fx

FR
fx PRR

fx R−1PRθ
fx PRz

fx

R−1F θ
fx R−1PRθ

fx R−2P θθ
fx R−1P θz

fx

F z
fx PRz

fx R−1PRz
fx P zz

fx









.

(31)
The contravariant components of the radiation four-
force density in terms of tetrad components (Eqs. 19
and 22) are

Gt = γGt̂
co + γviGî

co,

GR = GR̂
co + γvRGt̂

co +
γ − 1

v2
vRviG

î
co, (32)

RGθ = Gθ̂
co + γvθGt̂

co +
γ − 1

v2
vθviG

î
co,

Gz = Gẑ
co + γvzGt̂

co +
γ − 1

v2
vzviG

î
co.

The explicit equations for cylindrically symmetric
flow in a flat spacetime are given in Park (2006b). The
continuity equation from Eq. 3 is

∂

∂t
(γn) +

1

R

∂

∂R
(RnUR) +

∂

∂θ
(nUθ) +

∂

∂z
(nUz) = 0.

(33)
The relativistic Euler equations are for R-component,

γωg
∂UR

∂t
+ ωgU

i ∂UR

∂xi
− ωgR(Uθ)2

+
∂Pg

∂R
+ γUR ∂Pg

∂t
+ URU i ∂Pg

∂xi
(34)

= −γURGt + [1 + (UR)2]GR + R2URUθGθ

+ URUzGz ,

for θ-component,

γωg
∂Uθ

∂t
+ ωgU

i ∂Uθ

∂xi
+ 2ωg

URUθ

R

+
1

R2

∂Pg

∂θ
+ γUθ ∂Pg

∂t
+ UθU i ∂Pg

∂xi
(35)

= −γUθGt + UθURGR + [1 + R2(Uθ)2]Gθ

+ UθUzGz ,

and for z-component

γωg
∂Uz

∂t
+ ωgU

i ∂Uz

∂xi

+
∂Pg

∂z
+ γUz ∂Pg

∂t
+ UzU i ∂Pg

∂xi
(36)

= −γUzGt + UzURGR + R2UzUθGθ

+ [1 + (Uz)2]Gz.

The gas energy Eq. 27 in this cylindrical coordinates
is

− nU t ∂

∂t

(ωg

n

)

− nU i ∂

∂xi

(ωg

n

)

+ U t ∂Pg

∂t
+ U i ∂Pg

∂xi
(37)

= −Gt̂
co = Λco − Γco.

The time component of Eq. 7 is the radiation energy
equation,

∂E

∂t
+

1

R

∂

∂R
(RFR) +

1

R

∂F θ

∂θ
+

∂F z

∂z
(38)

= −Gt = γ
(

Λco − Γco

)

− γχ̄covi.

The equations for the radiative flux are

∂FR

∂t
+

∂PRR

∂R
+

1

R

∂PRθ

∂θ

+
∂PRz

∂z
+

PRR
− P θθ

R
(39)

= −χ̄coF
R
co − γvR(Γco − Λco) −

γ − 1

v2
vRviχ̄coF

i
co

for R-direction,

∂F θ

∂t
+

∂PRθ

∂R
+

1

R

∂P θθ

∂θ

+
∂P θz

∂z
+

2PRθ

R
(40)

= −χ̄coF
θ
co − γvθ(Γco − Λco) −

γ − 1

v2
vθviχ̄coF

i
co

for θ-direction, and

∂F z

∂t
+

∂PRz

∂R
+

1

R

∂P θz

∂θ

+
∂P zz

∂z
+

PRz

R
(41)

= −χ̄coF
z
co − γvz(Γco − Λco) −

γ − 1

v2
vzviχ̄coF

i
co

for z-direction.

8. FLOW IN SCHWARZSCHILD SPACETIME

Spacetime around non-rotating black holes is de-
scribed by the Schwarzschild coordinate,

dτ2 = −gαβdxαdxβ

= Γ2dt2 −
dr2

Γ2
− r2(dθ2 + sin2 θdφ2), (42)
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where M is the mass of the central object, m ≡ GM/c2,
and Γ ≡ (1− 2m/r)1/2. The fixed tetrad in this metric
is simply

∂

∂t̂
=

1

Γ

∂

∂t
,

∂

∂r̂
= Γ

∂

∂r
,

∂

∂θ̂
=

1

r

∂

∂θ
,

∂

∂φ̂
=

1

r sin θ

∂

∂φ
.

(43)
The comoving tetrad, moving with four velocity Uα

with respect to the coordinate, is

∂

∂t̂co

=
γ

Γ

∂

∂t
+ γΓvr

∂

∂r
+ γvθ

1

r

∂

∂θ
+ γvφ

1

r sin θ

∂

∂φ
,

∂

∂r̂co
=

γ

Γ
vr

∂

∂t
+ Γ

[

1 + (γ − 1)
v2

r

v2

]

∂

∂r

+ (γ − 1)
vrvθ

v2

1

r

∂

∂θ
+ (γ − 1)

vrvφ

v2

1

r sin θ

∂

∂φ
,

∂

∂θ̂co

=
γ

Γ
vθ

∂

∂t
+ Γ(γ − 1)

vrvθ

v2

∂

∂r
(44)

+

[

1 + (γ − 1)
v2

θ

v2

]

1

r

∂

∂θ
+ (γ − 1)

vθvφ

v2

1

r sin θ

∂

∂φ
,

∂

∂φ̂co

=
γ

Γ
vφ

∂

∂t
+ Γ(γ − 1)

vrvφ

v2

∂

∂r

+ (γ − 1)
vθvφ

v2

1

r

∂

∂θ
+

[

1 + (γ − 1)
v2

φ

v2

]

1

r sin θ

∂

∂φ
.

The contravariant components of the radiation stress
tensor expressed in the fixed-frame radiation moments,

Rαβ =















Efx

Γ2 F r
fx

F θ
fx

Γr

F φ

fx

Γr sin θ

F r
fx Γ2P rr

fx

ΓP rθ
fx

r

ΓP rφ

fx

r sin θ
F θ

fx

Γr

ΓP rθ
fx

r

P θθ
fx

r2

P θφ

fx

r2 sin θ
F φ

fx

Γr sin θ

ΓP rφ

fx

r sin θ

P θφ

fx

r2 sin θ

P φφ

fx

r2 sin2 θ















(45)

show all the curvature and coordinate specifics (Park
2006a). The contravariant components of the radiation
four-force density are

Gt =
γ

Γ

[

Gt̂
co + viG

î
co

]

Gr = Γ

[

Gr̂
co + γvrG

t̂
co +

γ − 1

v2
vrviG

î
co

]

(46)

Gθ =
1

r

[

Gθ̂
co + γvθG

t̂
co +

γ − 1

v2
vθviG

î
co

]

Gφ =
1

r sin θ

[

Gφ̂
co + γvφGt̂

co +
γ − 1

v2
vφviG

î
co

]

.

Continuity equation (3) in Schwarzschild metric is

1

Γ2

∂

∂t
(yn) +

1

r2

∂

∂r
(r2nU r)

+
1

sin θ

∂

∂θ
(sin θnUθ) +

∂

∂φ
(nUφ) = 0, (47)

where y = −Ut. The r-component of Euler equation
(26) is

ωgU
t ∂U r

∂t
+ ωgU

i ∂U r

∂xi

+ ωg
m

r2

[

Γ2(U t)2 − Γ−2(U r)2
]

− ωg
Γ2

r

[

(rUθ)2 + (r sin θUφ)2
]

+ U rU t ∂Pg

∂t
+ Γ2 ∂Pg

∂r
+ U rU i ∂Pg

∂xi

= −yU rGt + [1 + Γ−2(U r)2]Gr + r2U rUθGθ

+r2 sin2 θU rUφGφ, (48)

the θ-component

ωgU
t ∂Uθ

∂t
+ ωgU

i ∂Uθ

∂xi

+ 2ωg
1

r
U rUθ

− ωg sin θ cos θ(Uφ)2

+ UθU t ∂Pg

∂t
+

1

r2

∂Pg

∂θ
+ UθU i ∂Pg

∂xi

= −yUθGt + Γ−2U rUθGr + [1 + r2(Uθ)2]Gθ

+r2 sin2 θUθUφGφ, (49)

and the φ-part

ωgU
t ∂Uφ

∂t
+ ωgU

i ∂Uφ

∂xi

+ 2ωg
1

r
U rUφ + 2ωg cot θUθUφ

+ UφU t ∂Pg

∂t
+

1

r2 sin2 θ

∂Pg

∂φ
+ UφU i ∂Pg

∂xi

= −yUφGt + Γ−2U rUφGr + r2UθUφGθ

+[1 + r2 sin2 θ(Uφ)2]Gφ. (50)

The gas energy equation is

−nU t ∂

∂t

(ωg

n

)

− nU i ∂

∂xi

(ωg

n

)

+ U t ∂Pg

∂t
+ U i ∂Pg

∂xi

= −Gt̂
co = Λco − Γco. (51)

The equation for the radiation energy is the time
component of the conservation equation for the radia-
tion stress tensor (Eq. 7),

1

Γ2

∂E

∂t
+

1

Γ2r2

∂

∂r
(r2Γ2F r)

+
1

Γr sin θ

∂

∂θ
(sin θF θ) +

1

Γr sin θ

∂

∂φ
(Fφ) (52)

= −Gt = −
y

Γ2

(

Γco − Λco + χ̄coviF
i
co

)

.

The equations for the radiative momentum are the spa-
tial components of the conservation equation for the
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radiation stress tensor (Eq. 7),

∂F r

∂t
+ Γ2 ∂P rr

∂r

+
Γ

r sin θ

∂

∂θ

(

sin θP rθ
)

+
Γ

r sin θ

∂P rφ

∂φ

+
m

r2
(E + P rr) +

Γ2

r

(

2P rr
− P θθ

− Pφφ
)

(53)

= −Gr

= −Γχ̄coF
r
co − Γγvr(Γco − Λco) − Γ

γ − 1

v2
vrviχ̄coF

i
co,

1

Γ

∂F θ

∂t
+

1

r

∂

∂r

(

ΓrP rθ
)

+
1

r sin θ

∂

∂θ

(

sin θP θθ
)

+
1

r sin θ

∂P θφ

∂φ

+
2Γ

r
P rθ

−
1

r tan θ
Pφφ (54)

= −rGθ

= −χ̄coF
θ
co − γvθ(Γco − Λco) −

γ − 1

v2
vθviχ̄coF

i
co,

and

1

Γ

∂Fφ

∂t
+

1

r

∂

∂r

(

ΓrP rφ
)

+
1

r

∂P θφ

∂θ
+

1

r sin θ

∂Pφφ

∂φ

+
2Γ

r
P rφ +

2

r tan θ
P θφ (55)

= −r sin θGφ

= −χ̄coF
φ
co − γvφ(Γco − Λco) −

γ − 1

v2
vφviχ̄coF

i
co.

In the case when the radiation field is spherically
symmetric and time-independent with no interaction
with matter, the Eq. 52 reduces to

4πr2Γ2F r = L∞, (56)

where the constant L∞ is the luminosity measured by
an observer at infinity. However, a static observer at a
given r finds that the luminosity he or she measures is
a function of radius with

Lr ≡ 4πr2F r =
L∞

1 − 2m/r
, (57)

which shows the gravitational redshift effect. Hence, in
the presence of gravitational field, one always has to be
careful about the definition of luminosity. For example,
the usual Eddington luminosity at which radiative force
balances the gravitational pull from the central mass
becomes a function of radius and matter velocity (Park
1992).

9. FLOW IN KERR SPACETIME

This covariant radiation moment formalism can be
straightforwardly extended to more complex spacetime.
If we describe the Kerr spacetime with Boyer-Lindquist
coordinate

dτ2 = −gαβdxαdxβ (58)

= α2dt2 − γij(dxi + βidt)(dxj + βjdt),

where i, j = r, θ, φ, the lapse function α = (Σ∆/A)1/2,
the shift vector βi with a non-zero component βφ =
−ω, the spatial matrix γij with non-zero components

of γrr = Σ/∆, γθθ = Σ, γφφ = A sin2 θ/Σ, Σ =
r2 +a2 cos2 θ, ∆ = r2

−2mr+a2, and A = (r2 +a2)2−
a2∆sin2 θ, the tetrad for the locally non-rotating ref-
erence frame, i.e., the fixed frame, is (Bardeen et al.
1972)

∂

∂t̂
=

1

α

(

∂

∂t
− βφ ∂

∂φ

)

,

∂

∂r̂
=

1

γ
1/2
rr

∂

∂r
, (59)

∂

∂θ̂
=

1

γ
1/2

θθ

∂

∂θ
,

∂

∂φ̂
=

1

γ
1/2

φφ

∂

∂φ
.

An observer in the fixed frame sees the matter moving
with the proper three-velocity (Takahashi 2007)

vr = vr =
γ

1/2
rr

α

U r

U t
,

vθ = vθ =
γ

1/2

θθ

α

Uθ

U t
, (60)

vφ = vφ =
γ

1/2

φφ

α

(

Uφ

U t
+ βφ

)

,

the Lorentz factor of which is γ ≡ (1− v2)−1/2 = αU t.
Now, the comoving tetrad can be expressed in terms of
the coordinate base (Takahashi 2007),

∂

∂t̂co

=
γ

α

∂

∂t
+

γvr

γ
1/2
rr

∂

∂r

+
γvθ

γ
1/2

θθ

∂

∂θ

+γ

(

vφ

γ
1/2

φφ

−
βφ

α

)

∂

∂φ
,

∂

∂r̂co
=

γvr

α

∂

∂t
+

1

γ
1/2
rr

(

1 + v2
r

γ2

γ + 1

)

∂

∂r

+
vrvθ

γ
1/2

θθ

γ2

γ + 1

∂

∂θ
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+

(

vrvφ

γ
1/2

φφ

γ2

γ + 1
−

βφ

α
γvr

)

∂

∂φ
, (61)

∂

∂θ̂co

=
γvθ

α

∂

∂t
+

vrvθ

γ
1/2
rr

γ2

γ + 1

∂

∂r

+
1

γ
1/2

θθ

(

1 + v2
θ

γ2

γ + 1

)

∂

∂θ

+

(

vθvφ

γ
1/2

φφ

γ2

γ + 1
−

βφ

α
γvθ

)

∂

∂φ
,

∂

∂φ̂co

=
γvφ

α

∂

∂t
+

vrvφ

γ
1/2
rr

γ2

γ + 1

∂

∂r

+
vθvφ

γ
1/2

θθ

γ2

γ + 1

∂

∂θ

+

[

1

γ
1/2

θθ

(

1 + v2
φ

γ2

γ + 1

)

−
βφ

α
γvφ

]

∂

∂φ
.

The coordinate base in terms of comoving tetrad is
also given in Takahashi (2007). This allows the con-
travariant components of radiation stress tensor Rαβ to
be expressed with the fixed-frame radiation moments
(Takahashi 2007),

Rtt =
Efx

α2

Rtr = Rrt =
F r

fx

αγ
1/2
rr

Rtθ = Rθt =
F θ

fx

αγ
1/2

θθ

Rtφ = Rφt =
1

α

(

Fφ
fx

γ
1/2

φφ

− βφ Efx

α

)

Rrr =
P rr

fx

γrr
(62)

Rrθ = Rθr =
P rθ

fx

γ
1/2
rr γ

1/2

θθ

Rrφ = Rφr =
1

γ
1/2
rr

(

P rφ
fx

γ
1/2

φφ

− βφ
F r

fx

α

)

RRθθ =
P θθ

fx

γθθ

Rθφ = Rφθ =
1

γ
1/2

θθ

(

P θφ
fx

γ
1/2

φφ

− βφ
F θ

fx

α

)

Rφφ =
Pφφ

fx

γφφ
−

2βφ

αγ
1/2

φφ

Fφ
fx +

(

βφ

α

)2

Efx.

The contravariant components of the radiation force

are

Gt =
γ

α

[

Gt̂
co + viG

î
co

]

Gr =
1

γ
1/2
rr

[

Gr̂
co + γvrG

t̂
co +

γ2

γ + 1
vrviG

î
co

]

(63)

Gθ =
1

γ
1/2

θθ

[

Gθ̂
co + γvθG

t̂
co +

γ2

γ + 1
vθviG

î
co

]

Gφ =
Gφ̂

co

γ
1/2

φφ

+ γ

[

vφ

γ
1/2

φφ

−
βφ

α

]

Gt̂
co

+γ

[

γvφ

γ
1/2

φφ (γ + 1)
−

βφ

α

]

viG
î
co.

The explicit forms of continuity equation can be ob-
tained from Eq. 3, relativistic Euler equations from Eq.
26, and energy equation from Eq. 27 with radiation-
matter interaction expressed as functions of comoving-
frame radiation moments, as shown in (Takahashi
2007). Radiation energy and momemtum equations
can be expressed with coordinate derivatives and fixed-
frame radiation momemnts (Takahashi 2007). Simi-
larly, same equations can also be derived for the Kerr-
Schild coordinate, which does not have a coordinate
singularity at the event horizon (Takahashi 2008).

10. CLOSURES AND CAVEATS

The number of unknown radiation moments in gen-
eral is 10 (Eq. 9) while the number of radiation mo-
ment equations are 4 (Eq. 7). This is the general lim-
itation of moment approach: equations at each order
are not sufficient to determine all the moments of the
same order. Astronomers routinely employ some kind
of closure relations to close the equations, such as flux-
limited diffusion, PN approximation, the M1 closure,
and the variable Eddington factor (see Chan 2011, for
review and references). One popular choice is the vari-
able Eddington factor because it is easy to implement
yet gives reasonable limit behaviour: it is defined, in
a given frame, as fE ≡ P/E and has an asymptotic
value fE = 1/3 when the optical depth τ ≫ 1 and
fE = 1 when τ ≪ 1. The correct form of fE can only
be calculated by solving the full angle-dependent radia-
tive transfer equation (see e.g., Auer & Mihalas 1970;
Hummer & Rybicki 1971; Yin & Miller 1995) for a spe-
cific case. In a complex radiation hydrodynamic flow,
this is impractical, and an educated guess of fE as a
function of the optical depth is sometimes tried (see,
e.g., Tamazawa et al. 1975; Park 1990). In an arbi-
trary three-dimensional system, it is far less trivial to
calculate the variable Eddington factor from the basic
angle-dependent radiative transfer equations. One may
apply some physical principles to derive the functional
form. For example, Minerbo (1978) determined from
statistical mechanics the maximum entropy Eddington
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‘tensor’, f ij
ν ≡ P ij

ν /Eν , for a static flow in a flat space-
time and provided the functional form of f ij

ν in terms of
Eν and F i

ν (Minerbo 1978), which may be generalized
to frequency-integrated radiation moments in comov-
ing tetrad frame (Park 2006c). Recently, Chan (2011)
derived another physically motivated closures based on
Grad’s moment method, and provided a more sophisti-
cated 14-field method that minimizes unphysical pho-
ton self-interaction.

It is important to remember that the current formal-
ism with a simple closure such as variable Eddington
factor may describe the real radiation field with reason-
able accuracy, but can fail for certain conditions. Since
any moment formalism terminates the higher order mo-
ments artificially, it can lead to pathological behaviours
in special situations. For example, a very steep velocity
gradient is known to produce unphysical effects (Tur-
olla & Nobili 1988; Dullemond 1999; Fukue 2008a).
Although careful velocity dependent Eddington factor
may circumvent such problems (see e.g., Fukue 2008a,
2008b, 2009), it is still a specific and not a general rem-
edy that is not guaranteed to work in different cases.

11. SUMMARY

I have shown one approach to general relativistic
radiation hydrodynamics. It is a covariant formalism
based on the frequency-integrated radiation moments
and, therefore, can be straightforwardly applied to any
spacetime or coordinate systems. Since it uses a finite
number of radiation moments and a certain choice of
closure relation, it is an approximate yet reasonable
way to solve the radiation transport. It has an advan-
tage of being simple and physically intuitive enough to
be applicable to diverse astrophysical problems.
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