• Title/Summary/Keyword: General base catalysis

Search Result 56, Processing Time 0.023 seconds

Kinetic Studies on the Nucleophilic Addition of Thioglycolic Acid to S-Phenyl-S-vinyl-N-p-tosylsulfilimine Derivatives (S-Phenyl-S-vinyl-N-p-tosylsulfilimine 유도체에 대한 Thioglycolic Acid의 친핵성 첨가반응에 관한 반응속도론적 연구)

  • Kim, Tae Rin;Han, Man So;Pyun, Sang Yong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.10
    • /
    • pp.663-669
    • /
    • 1996
  • The rate constants for the nucleophilic addition reactions of thioglycolic acid to vinylsulfilimine(VSI) derivatives(p-OCH3, H, p-Cl and p-Br) were determined by an ultraviolet spectrophotometric method, and rate equations which can be applied over a wide pH range were obtained. On the basis of rate equation, general base catalysis and substituent effect, a plausible addition reaction mechanism was proposed: Below pH 3.0, the reaction was proceeded via the addition of neutral molecule to carbon-carbon double bond after protonation at the nitrogen atom of the sulfilimine, and in the pH range of 3.0 to 9.0, the neutral molecule and its anion attacked to carbon-carbon double bond competitively. Above pH 9.0, sulfide anion added to the double bond (Michael type addition).

  • PDF

Kinetic Studies on the Nucleophilic Addition of Thiourea to ${\beta}$-Nitrostyrene Derivatives (${\beta}$-Nitrostyrene 유도체에 대한 Thiourea의 친핵성 첨가반응에 관한 반응속도론적 연구)

  • Tae-Rin Kim;Yeun-Soo Chung;Myung-Sook Chung
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.268-274
    • /
    • 1991
  • The rate constants for the nucleophilic addition reactions of thiourea to ${\beta}$-nitrostyrene derivatives(p-H, p-Cl, p-CH$_3$, p-OCH$_3$, p-NO$_2$) were determined by UV spectrophotometer and rate equations which can be applied over a wide pH ranges were obtained. On the basis of substituent effect, general base catalysis and rate equations, a reaction mechanism was proposed and revealed quantitively. Above pH 9.00, sulfide anion adds to the double bond(Michael type addition) and between pH 7.00 and 9.00, the neutral molecules and its anions add to the double bond competitively. Below pH 7.00, the addition reaction to double bond is initiated by the addition of neutral thiourea molecule.

  • PDF

Kinetic Studies on the Nucleophilic Addition of Cysteine and Thioglycolic Acid to ${\beta},\;{\beta}$-Dichlorostyrene Derivatives (${\beta},\;{\beta}$-Dichlorostyrene 유도체의 Cysteine 및 Thioglycolic Acid에 대한 친핵성 첨가반응의 반응속도론적 연구)

  • Tae-Rin Kim;Jong-Yol Ryu;Duk-Chan Ha
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.260-266
    • /
    • 1988
  • The rate constants for the nucleophilic addition reactions of thioglycolic acid and cysteine to ${\beta},\;{\beta}$-dichlorostyrene derivatives(p-H, p-Cl, $p-CH_3,\;and\;p-OCH_3$) were photochemically determined at various pH and a rate equation which can be applied over a wide pH range was obtained. On the bases of rate equation, general base catalysis and substituent effect, the plausible addition reaction mechanism was proposed: Above pH 9.0, the reaction was initiated by the addition of sulfide anion, and in the range of pH 7.0 to 9.0, the neutral molecules and it's anions attacked to the double bond, competitively. However, below pH 7.0, only the neutral molecules of thioglycolic acid or cysteine added to the carbon-carbon double bond.

  • PDF

Catalytic Effects of Co(Ⅲ) Complexes on the Hydrolysis of p-Nitrophenyl Picolinate (p-Nitrophenyl Picolinate의 가수분해에 대한 코발트(Ⅲ) 착물의 촉매효과)

  • Noh, Jae Geun;Kim, Chang Suk;Hong, Soon Yung
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.4
    • /
    • pp.254-263
    • /
    • 1996
  • Five cobalt(Ⅲ) complexes were synthesized from bi- or tridentate nitrogen ligands. Catalytic actions of these complexes for hydrolyses of p-nitrophenyl picolinate, p-nitrophenyl nicotinate, and p-nitrophenyl isonicotinate were investigated by a spectrophotometric method. p-Nitrophenyl picolinate showed the most senstive reaction among three substrates by these catalysts. Aquohydroxo Co(Ⅲ) complexes raised as much as 21∼40 times the rate of hydrolysis of p-nitrophenyl picolinate at pH 6.5. Activities of complexes were in the order: Co(ibpn)(OH)2(OH2) > Co(aepn)(OH)2(OH2) > Co(tn)2(OH)(OH2) > Co (bpy)2(OH)(OH2) > Co(dien)(OH)2(OH2). Catalytic hydrolysis was postulated to proceed through a intramolecular general base catalysis path which is mixed by a partial intramolecular nucleophilic catalysis.

  • PDF

Correlation of the Rates on Solvolysis of 2,2,2-Trichloroethyl Chloroformate Using the Extended Grunwald-Winstein Equation

  • Koh, Han-Joong;Kang, Suk-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1729-1733
    • /
    • 2012
  • The solvolysis rate constants of 2,2,2-trichloroethyl chloroformate ($Cl_3CCH_2OCOCl$, $\mathbf{3}$) in 30 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale and the $Y_{Cl}$ solvent ionizing scale, with sensitivity values of $1.28{\pm}0.06$ and $0.46{\pm}0.03$ for $l$ and $m$, respectively. The activation enthalpies (${\Delta}H^{\neq}$) are 10.1 to 12.8 $kcal{\cdot}mol^{-1}$ and the activation entropies (${\Delta}S^{\neq}$) are -27.8 to -36.8 $cal{\cdot}mol^{-1}{\cdot}K^{-1}$, which is consistent with the proposed bimolecular reaction mechanism. The kinetic solvent isotope effect ($k_{MeOH}/k_{MeOD}$) of 2.39 is also in accord with $S_N2$ mechanism probably assisted by general-base catalysis.

A Kinetic Study on Ethylaminolysis of Phenyl Y-Substituted-Phenyl Carbonates: Effect of Leaving-Group Substituents on Reactivity and Reaction Mechanism

  • Song, Yoon-Ju;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1722-1726
    • /
    • 2013
  • A kinetic study on nucleophilic substitution reactions of phenyl Y-substituted-phenyl carbonates (5a-5j) with ethylamine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$ is reported. The plots of $k_{obsd}$ vs. [amine] are linear for the reactions of substrates possessing a strong electron-withdrawing group (EWG) but curve upward for those of substrates bearing a weak EWG, indicating that the electronic nature of the substituent Y in the leaving group governs the reaction mechanism. The reactions have been concluded to proceed through a stepwise mechanism with one or two intermediates (a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$) depending on the nature of the substituent Y. Analysis of Bronsted-type plots and dissection of $k_{obsd}$ into microscopic rate constants have revealed that the reactions of substrates possessing a strong EWG (e.g., 5a-5f) proceed through $T^{\pm}$ with its formation being the rate-determining step, while those of substrates bearing a weak EWG (e.g., 5g-5j) proceed through $T^{\pm}$ and $T^-$.

Application of the Extended Grunwald-Winstein Equation to the Solvolyses of Phenyl Methanesulfonyl Chloride in Aqueous Binary Mixtures

  • Koh, Han-Joong;Kang, Suk-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1897-1901
    • /
    • 2011
  • This report shows the rates of solvolyses for phenyl methanesulfonyl chloride ($C_6H_5CH_2SO_2Cl$, I) in ethanol, methanol, and aqueous binary mixtures incorporating ethanol, methanol, acetone, 2,2,2-trifluroethanol (TFE) and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) are reported. Three representative solvents, studies were made at several temperatures and activation parameters were determined. The thirty kinds of solvents gave a reasonably precise extended Grunwald-Winstein plot, coefficient (R) of 0.954. The sensitivity values (l = 0.61 and m = 0.34, l/m = 1.8) of phenyl methanesulfonyl chloride (I) were smaller than those obtained for benzenesulfonyl chloride ($C_6H_5SO_2Cl$, II; l = 1.01 and m = 0.61) and 2-propanesulfonyl chloride ($(CH_3)_2CHSO_2Cl$, III; l = 1.28 and m = 0.64). As with the two previously studied solvolyses, an $S_N2$ pathway with somewhat ionization reaction is proposed for the solvolyses of I. The activation parameters, ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$, were determined and they are also in line with values expected for a bimolecular reaction mechanism. The kinetic solvent isotope effect of 2.34 in $CH_3OH/CH_3OD$ is in accord with a bimolecular mechanism, probably assisted by general-base catalysis.

Study on $^{99m}Tc$-Labeling Mechanism of Bz-MAG3 (Bz-MAG3의 테크네슘표지 기전에 관한 연구)

  • Jeong, Jae-Min
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.277-284
    • /
    • 1993
  • $^{99m}Tc$-MAG3는 세뇨관 배설을 하는 신장 기능 영상용 방사성의 약품으로서, 가운데 $^{99m}Tc$이 있고 1개의 유황과 3개의 질소가 아래쪽 면에 정사각형으로 배치되고 정점에 산소가 위치한 4각 피라미드형을 하고 있다. 그러나 시판되는 신장 영상용 MAG3는 반응성이 강한 -SH기에 의한 부산물 생성을 방지하기 위해 benzoyl기로 보호되어 있으므로 보통 조건으로는 잘 표지되지 않고 10분 정도 끓여주어야 한다. 본 실험에서는 실온에서도 benzoyl기를 잘 끊어지게 하는 이미다졸, 아고마틴, 괴리딘등과 같은 염기성 촉매제를 가하고 여러가지 PH에서 실온에서 반응시켜 본 결과, benzoyl기가 끊어지면서 $^{99m}Tc$과 -SH기가 반응하는 첫번째 반응이 일어난 후에도 산성에서 약알칼리성 범위에서는 중간체가 상당량 생성되고 알칼리성 (pH 10.5)이 되어야 최종 산물로 재빨리 넘어가는 것을 발견하였다. 또한 glucarate, medronate, phthalate, acetate 등 여러가지 다른 transchelating agent를 사용하여 같은 반응을 시킨 후에도 생성된 중간체의 HPLC 피크가 같은 retention time (Rt)을 보이는 것으로 보아 이 중간체의 화학구조내에는 transchelating agent를 포함하지 않는 것으로 보인다. 최종 생성물과 중간체의 ImM 시트테인 용액 중에서의 안정도 시험을 하여 본 결과 최종 생성물은 매우 안정하나 중간체는 불안정한 것을 발견하였다.

  • PDF

The α-Effect in SNAr Reaction of 1-Fluoro-2,4-dinitrobenzene with Hydrazine: Ground-State Destabilization versus Transition-State Stabilization

  • Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2371-2374
    • /
    • 2014
  • A kinetic study is reported on SNAr reaction of 1-fluoro-2,4-dinitrobenzene with a series of primary amines including hydrazine in $H_2O$ at $25.0^{\circ}C$. The plots of $k_{obsd}$ vs. [amine] are linear and pass through the origin, indicating that general-base catalysis by a second amine molecule is absent. The Br${\o}$nsted-type plot exhibits an excellent linear correlation with ${\beta}_{nuc}$ = 0.46 when hydrazine is excluded from the correlation. The reaction has been suggested to proceed through a stepwise mechanism, in which expulsion of the leaving group occurs after the rate-determining step (RDS). Hydrazine is ca. 10 times more reactive than similarly basic glycylglycine (i.e., the ${\alpha}$-effect). A five-membered cyclic intermediate has been suggested for the reaction with hydrazine, in which intramolecular H-bonding interactions would facilitate expulsion of the leaving group. However, the enhanced leaving-group ability is not responsible for the ${\alpha}$-effect shown by hydrazine because expulsion of the leaving group occurs after RDS. Destabilization of the ground-state of hydrazine through the electronic repulsion between the nonbonding electron pairs is responsible for the ${\alpha}$-effect found in the current $S_NAr$ reaction.

The Kinetics and Mechanism of the Nucleophilic Addition of Thiourea for Furfurylidene Acetophenone derivatives (Furfurylidene acetophenone유도체에 대한 Thiourea의 친핵성 첨가반응 메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Mok, Gap-Young;Oh, Se-Young;Ryu, Jung-Wok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 1997
  • Furfurylidene acetophenone derivatives were synthesis, it was measured that nucleophilic addition made use of UV at a wide pH 1.0${\sim}$13.0 range in 30% dioxane-$H_2O$ solution, 25$^{\circ}C$. On the basis of general base catalysis, substitutent effect, confirmation of nucleophilic addition products, it was measured the reaction rate of furfurylidene acetophenone derivatives for the pH change. It may be concluded that a part was unrelated to pH and another part was in proportion to concentration of hydroxide ion: Above pH 10.0. sulfide anion adds to the double bond (Michael type addition), a part having no concern with pH, addition reaction to double bond is initiated by addition of neutral thiourea molecule. From the result of measurement the reaction rate, nucleophilic addition of furfurylidene acetophenone derivatives confirmed to the irreversible first order. Through measurement the substituent effect. It found that reaction rate was accelerated by electron attracting group. On the basis of these findings, nucleophilic addition of thiourea for the furfurylidene acetophenone derivative was proposed a fitting mechanisms.