• Title/Summary/Keyword: General Chemistry

Search Result 914, Processing Time 0.022 seconds

Removal of Ammonia in Water using Acid-impregnated Activated Carbon and Dynamic Membrane System (산 첨착활성탄과 동적막 공정을 이용한 수중 암모니아 제거)

  • Choi, Won Kyung;Shin, Dong-Ho;Lee, Yong Taek
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.310-316
    • /
    • 2006
  • In this study, activated carbon in a powder form was used to remove dissolved ammonia which causes a fouling smell in water. Since the adsorption capacity of common powder activated carbon is not high enough, we prepared powder activated carbon deposited on an acid solution to enhance the adsorption capacity. The acid-impregnated activated carbon was applied on the surface of porous fibril support ($10{\sim}50{\mu}m$) by which adsorption and separation processes take place simultaneously by varying effective pressure. As the result, the ammonia removal efficiency is above 60% in the mixing process which is 10~15% higher than general powder activated carbon. From the result of an experiment on the pure permeable test of a dynamic membrane, its transmittance is 400~700 LMH (liter per hour), indicating that the prepared membrane works as a microfiltration membrane. Therefore, it is expected that the membrane prepared in this way would improve the efficiency of water treatment than conventional membranes.

Solvolysis of Substituted Benzyl Benzenesulfonates in MeOH-MeCN Mixtures (MeOH-MeCN 혼합용매계에서 치환된 벤젠술폰산벤질의 가용매 분해반응)

  • Ikchoon Lee;Won Hee Lee;Chul Hyun Kang;Se Chul Sohn;Choong Shik Kim
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.366-373
    • /
    • 1984
  • Methanolysis rates of benzylbenzenesulfonates, substituted both on the substrate (Y) and on the leaving group (Z), were determined in MeOH-MeCN mixtures. The results showed that the reaction proceeds via the dissociative $S_N2$ mechanism, in which bond breaking proceeds in greater degree compared to bond formation at the transition state(TS). Multiple Hammett correlation analysis showed that the cross term, ${\rho}_{YZ}$, is very small and hence the cross interaction of two substituents, Y and Z, at the TS is not important, supporting the dissociative $S_N2 $ type mechanism. While transition state variations predicted by the quantum mechanical model is shown to agree in general with the experimental results, those predicted by the potential energy surface model failed to account for the leaving group effect properly.

  • PDF

Effect of Amine-Based Antioxidants as Stabilizers for Biodiesel (바이오디젤용 산화방지제인 아민안정제들의 효과)

  • Park, Soo-Youl;Kim, Hun-Soo;Kim, Seung-Hoi
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.258-263
    • /
    • 2015
  • Biodiesel is an environmentally-friendly fuel with low smoke emission because it contains about 10% oxygen. Biodiesel fuel prepared by transesterification of vegetable oil or animal fats is susceptible to auto-oxidation. The rate of auto-oxidation depends on the number of methylene double bonds contained within the fatty acid methyl or ethyl ester groups. Biodiesel may be easily oxidized under several conditions, i.e., upon exposure to sunlight, temperature, oxygen environment. Maintenance of the fuel quality of biodiesel requires the development of technologies to increase the resistance of biodiesel to oxidation. Treatment with antioxidants is a promising approach for extending the shelf-life or storage time of biodiesel. The chemical properties of various amine-based antioxidants were evaluated after synthesis of the antioxidants by condensation of phenylenediamine with alkylamines at room temperature. In general, the oxidative stability can be assessed based on various experimental parameters. Such parameters may include temperature, pressure, and the flow rate of air through the samples. The Rancimat method (EN14112) was selected because it is a rapid technique that requires very little sample and provides good precision for oxidative degradation analysis. Specifically, the EN 14112 technique provides enhanced efficiency for oxidative stability evaluation when a larger ester head group is utilized. Therefore, this technique was employed for evaluation of the oxidation stability of biodiesel by the Rancimat method (EN14112).

Reaction of Diisobutylaluminum Hydride-Dimethyl Sulfide Complex with Selected Organic Compounds Containing Representative Functional Groups. Comparison of the Reducing Characteristics of Diisobutylaluminum Hydride and Its Dimethyl Sulfide Complex

  • Cha, Jin-Soon;Jeong, Min-Kyu;Kwon, Oh-Oun;Lee, Keung-Dong;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.873-881
    • /
    • 1994
  • The approximate rate and stoichiometry of the reaction of excess diisobutylaluminum hydride-dimethyl sulfide complex($DIBAH-SMe_2$) with organic compounds containing representative functional group under standardized conditions (toluene, $0{\circ}C$) were examined in order to define the reducing characterstics of the reagent and to compare the reducing power with DIBAH itself. In general, the reducing action of the complex is similar to that of DIBAH. However, the reducing power of the complex is weaker than that of DIBAH. All of the active hydrogen compounds including alcohols, amines, and thiols evolve hydrogen slowly. Aldehydes and ketones are reduced readily and quantitatively to give the corresponding alcohols. However, $DIBAH-SMe_2$ reduces carboxylic acids at a faster rate than DIBAH alone to the corresponding alcohols with a partial evolution of hydrogen. Similarly, acid chlorides, esters, and epoxides are readily reduced to the corresponding alcohols, but the reduction rate is much slower than that of DIBAH alone. Both primary aliphatic and aromatic amides examined evolve 1 equiv of hydrogen rapidly and are reduced slowly to the amines. Tertiary amides readily utilize 2 equiv of hydride for reduction. Nitriles consume 1 equiv of hydride rapidly but further hydride uptake is quite slow. Nitro compounds, azobenzene, and azoxybenzene are reduced moderately. Cyclohexanone oxime liberates ca. 0.8 equiv of hydrogen rapidly and is reduced to the N-hydroxylamine stage. Phenyl isocyanate is rapidly reduced to the imine stage, but further hydride uptake is quite sluggish. Pyridine reacts at a moderate rate with an uptake of one hydride in 48 h, while pyridine N-oxide reacts rapidly with consumption of 2 equiv of hydride for reduction in 6h. Similarly, disulfides and sulfoxide are readily reduced, whereas sulfide, sulfone, and sulfonic acid are inert to this reagent under these reaction conditions.

Method validation of detecting ethanol metabolites (EtG, EtS) in post-mortem spleen (비장 조직에서 에탄올 대사체(EtG, EtS)를 검출하는 방법과 유효성 확인)

  • Kim, Soo-Min;Jo, Young-Hoon;An, Song-Hie;Lee, Woo-Jae;Kwon, Mia
    • Analytical Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.115-121
    • /
    • 2021
  • Ethyl glucuronide (EtG) and ethyl sulfate (EtS), which are ethanol metabolites, are direct indicators of ethanol intake; they have been studied in a variety of biological samples in forensic science. It is necessary to analyze ethanol metabolites to determine whether the ethanol detected in autopsy cases was due to alcohol consumption before death or due to the ethanol produced from post-mortem decay. In general, EtG and EtS are detected in the blood together with ethanol; however, it may be difficult to secure blood depending on the extent of decay. Therefore, the aforementioned method should be replaced by detecting the ethanol metabolites using tissue biological samples. In this study, we determined the optimal experimental conditions for detecting EtG and EtS from spleen samples using Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS). Herein, the test method was validated, and an analysis method was applied to the actual autopsy cases.

The Hydroxyl Group-Solvent and Carbonyl Group-Solvent Specific Interactions for Some Selected Solutes Including Positional Isomers in Acetonitrile/Water Mixed Solvents Monitored by HPLC

  • Cheong, Won-Jo;Keum, Young-Ik;Ko, Joung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2002
  • We have evaluated the specific hydroxyl group-solvent and carbonyl group-solvent interactions by using an Alltima C18 stationary phase and by measuring the retention data of carefully selected solutes in 60/40, 70/30, and 80/20(v/v%) acetonitrile/water eluents at 25, 30, 35, 40, 45, and 50 oC. The selected solutes are phenol, acetophenone, alkylbenznes(benzene to hexylbenznene), 4 positional isomers of phenylbutanol, 5-phenyl-1-pentanol, 3 positional isomers of alkylarylketone derived from butylbenzene, and 1-phenyl-2-hexanone. The magnitudes of hydroxyl group-acetonitrile/water specific interaction enthalpies are larger than those of carbonyl group-acetonitrile/water specific interaction enthalpies in general while the magnitudes of carbonyl group-methanol/water specific interaction enthalpies are larger than those of hydroxyl group-methanol/water specific interactions. We observed clear discrepancies in functional group-solvent specific interaction among positional isomers. The variation trends of solute transfer enthalpies and entropies with mobile phase composition in the acetonitrile/water system are much different from those in the methanol/water system. The well-known pocket formation of acetonitrile in aqueous acetonitrile mixtures has proven to be useful to explain such phenomena.

A Kinetic Study on Ethylaminolysis of Phenyl Y-Substituted-Phenyl Carbonates: Effect of Leaving-Group Substituents on Reactivity and Reaction Mechanism

  • Song, Yoon-Ju;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1722-1726
    • /
    • 2013
  • A kinetic study on nucleophilic substitution reactions of phenyl Y-substituted-phenyl carbonates (5a-5j) with ethylamine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$ is reported. The plots of $k_{obsd}$ vs. [amine] are linear for the reactions of substrates possessing a strong electron-withdrawing group (EWG) but curve upward for those of substrates bearing a weak EWG, indicating that the electronic nature of the substituent Y in the leaving group governs the reaction mechanism. The reactions have been concluded to proceed through a stepwise mechanism with one or two intermediates (a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$) depending on the nature of the substituent Y. Analysis of Bronsted-type plots and dissection of $k_{obsd}$ into microscopic rate constants have revealed that the reactions of substrates possessing a strong EWG (e.g., 5a-5f) proceed through $T^{\pm}$ with its formation being the rate-determining step, while those of substrates bearing a weak EWG (e.g., 5g-5j) proceed through $T^{\pm}$ and $T^-$.

Vibrational Analysis of Ferrocyanide Complex Ion Based on Density Functional Force Field

  • Park, Sun-Kyung;Lee, Choong-Keun;Lee, Sang-Ho;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.253-261
    • /
    • 2002
  • Vibrational properties of ferrocyanide complex ion, $[Fe(CN)_6]^{4-}$ , have been studied based on the force constants obtained from the density functional calculations at B3LYP/$6-31G^{\ast\ast}$ level by means of the normal mode analysis using new bond angle and linear angle internal coordinates recently developed. Vibrations of ferrocyanide were manipulated by twenty-three symmetry force constants. The angled bending deformations of C-Fe-C, the linear bending deformations of Fe-C${\equiv}$N and the stretching vibrations of Fe-C have been quantitatively assigned to the calculated frequencies. The force constants in the internal coordinates employed in the modified Urey-Bradley type potential were evaluated on the density functional force field applied, and better interaction force constants in the internal coordinates have been proposed. The valence force constants in the general quadratic valence force field were also given. The stretch-stretch interaction and stretch-bending interaction constants are not sensitive to the geometrical displacement in the valence force field.

Endocrine Profiles and Blood Chemistry Patterns of Cloned Miniature Pigs in the Post-Puberty Period

  • Lee, Sung-Lim
    • Journal of Embryo Transfer
    • /
    • v.29 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • Although the majority of surviving pigs cloned by somatic cell nuclear transfer (SCNT) appear to be physiologically normal, there is a general lack of detailed hemato-physiologic studies for the period of early adulthood to substantiate this claim. In the present study, we investigated variation in blood chemistry and endocrinological parameters between mesenchymal stem cells (MSCs) derived from cloned and normal age-matched female and male miniature pigs. Cloned females and males showed normal ranges for complete blood count assessments. Biochemical assessments showed that ${\gamma}$-GGT, ALT and cholesterol levels of male and female clones were significantly (P<0.05 or P<0.01, respectively) higher than that of age-matched control miniature pigs. Variations in insulin and IGF-1 were higher in female clones than in male clones and controls. Thus, although female and male cloned miniature pigs may be physiologically similar to normal animals, or at least within normal ranges, a greater degree of physiological and endocrinological variation was found in cloned pigs. The above variation must be taken into account before considering cloned female or male miniature pigs for various biomedical applications.

Synthesis of [1,2,4]-Triazole Derivatives and Their Anticancer Activities ([1,2,4]-Triazole 유도체의 합성 및 항암활성)

  • Lee, So-Ha;Kim, Jun-Suck;Jeon, Jae-Ho;Lee, Sook-Ja
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.109-116
    • /
    • 2007
  • 2-Chlorobenzoyl hydrazine refluxed with benzoyl isothiocyanate and phenyl isothiocyanate in ethanol for 3 hours to give benzamide derivative (1) and anilinederivative (2) on yield of 71%and 95%, respectively. Benzamide derivative (1) reacted with ethanolic sodium hydroxide on reflux to afford cyclization product (3), followed by general substitution reaction of two steps to give acetamide (5), and derivatived acetamides 7a-7k, while aniline derivative (2) reacted with ethanolic sodium hydroxide on reflux to afford another cyclization product (4). Thiol (4) reacted with N-phenyl chloroacetamide in the presence of potassim carbonate to give acetamide derivative (6). Compounds 1-7kwere evaluated for their growth inhibition against five cancer cell lines, including human lung carcinoma (A-549), human prostate cancer (DU145), human colon adenocarcinoma (HT-29), human malignant melanoma (SK-MEL-2) and human ovary malignant ascites (SK-OV-3) with sulforhodamine B (SRB) assay. All compounds (1-7k) showed low inhibition activities under 50% on 100M concentration.