Browse > Article
http://dx.doi.org/10.5012/bkcs.2002.23.2.253

Vibrational Analysis of Ferrocyanide Complex Ion Based on Density Functional Force Field  

Park, Sun-Kyung (Department of Chemistry, Chungbuk National University)
Lee, Choong-Keun (Department of Chemistry, Chungbuk National University)
Lee, Sang-Ho (Biophysics Research Division and Department of Physics, The University of Michigan)
Lee, Nam-Soo (Department of Chemistry, Chungbuk National University)
Publication Information
Abstract
Vibrational properties of ferrocyanide complex ion, $[Fe(CN)_6]^{4-}$ , have been studied based on the force constants obtained from the density functional calculations at B3LYP/$6-31G^{\ast\ast}$ level by means of the normal mode analysis using new bond angle and linear angle internal coordinates recently developed. Vibrations of ferrocyanide were manipulated by twenty-three symmetry force constants. The angled bending deformations of C-Fe-C, the linear bending deformations of Fe-C${\equiv}$N and the stretching vibrations of Fe-C have been quantitatively assigned to the calculated frequencies. The force constants in the internal coordinates employed in the modified Urey-Bradley type potential were evaluated on the density functional force field applied, and better interaction force constants in the internal coordinates have been proposed. The valence force constants in the general quadratic valence force field were also given. The stretch-stretch interaction and stretch-bending interaction constants are not sensitive to the geometrical displacement in the valence force field.
Keywords
Ferrocyanide; Vibrational analysis; Normal mode;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Nakagawa, I.; Shimanouchi, T. Spectrochim. Acta 1962, 18, 101   DOI   ScienceOn
2 Jones, L. H. Inorg. Chem. 1963, 2, 777   DOI
3 Bloor, D. J. Chem. Phys. 1964, 41, 2573   DOI
4 Nakagawa, I.; Shimanouchi, T. Spectrochim. Acta 1966, 22, 1707   DOI   ScienceOn
5 Nakagawa, I.; Shimanouchi, T.; Yamasaki, K. Inorg. Chem. 1968, 7, 1332   DOI
6 Nakagawa, I.; Shimanouchi, T. Spectrochim. Acta 1970, 26A, 131
7 Swanson, B. I.; Jones, L. H. J. Chem. Phys. 1970, 53, 3761   DOI
8 Griffith, W. P.; Turner, G. T. J. Chem. Soc. (A) 1970, 858   DOI
9 Swanson, B. I.; Jones, L. H. J. Chem. Phys. 1971, 55, 4174.   DOI
10 Hipps, K. W.; Williams, S. D.; Mazur, U. Inorg. Chem. 1984, 23, 3500   DOI
11 Swanson, B. I.; Jones, L. H. Inorg. Chem. 1974, 13, 313.   DOI
12 Jones, L. H.; McDowell, R. S.; GoldBlatt, M. Inorg. Chem. 1969, 8, 2349   DOI
13 Fan, L.; Ziegler, T. J. Phys. Chem. 1992, 96, 6937.   DOI
14 Berces, A.; Ziegler, T.; Fan, L. J. Phys. Chem. 1994, 98, 1584   DOI   ScienceOn
15 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785   DOI   ScienceOn
16 Lee, S.-H.; Krimm, S. Biopolymer 1998, 48, 283
17 Durig, J. R.; Yu, Z.; Guirgis, G. A. J. Phys. Chem. A 2000, 104, 741.   DOI   ScienceOn
18 Lee, S.-H.; Palmo, K.; Krimm, S. J. Comput. Chem. 1999, 20, 1067   DOI   ScienceOn
19 Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99, 3093   DOI   ScienceOn
20 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998
21 Sano, M.; Kashiwagi, H.; Yamatera, H. Inorg. Chem. 1982, 21, 3837   DOI
22 Mandix, K.; Hohanson, H. J. Phys. Chem. 1992, 96, 7261   DOI
23 Bolvin, H. J. Phys. Chem. A 1998, 102, 7525   DOI   ScienceOn
24 Park, S.-K.; Lee, N.-S.; Lee, S.-H. Bull. Korean Chem. Soc. 2000, 21, 959.
25 Pierloot, K.; Praet, E. V.; Vanquickenborne, L. G.; Roos, B. O. J. Phys. Chem. 1993, 97, 12220   DOI   ScienceOn
26 Jones, L. H.; Swanson, B. I.; Kubas, G. J. J. Chem. Phys. 1971, 55, 4174.   DOI
27 Jones, L. H.; Swanson, B. I. Acc. Chem. Res. 1976, 9, 128.   DOI
28 Sosa, C.; Andzelm, J.; Elkin, B. C.; Wimmer, E.; Dobbs, K. D.; Dixon, D. A. J. Phys. Chem. 1992, 96, 6630.   DOI
29 Berces, A.; Ziegler, T. J. Phys. Chem. 1995, 99, 11417.   DOI   ScienceOn
30 Ziegler, T. In Density Functional Methods in Chemistry and Materials Science; Springborg, M., Ed.; John Wiley and Sons: U.K., 1997; p 69.