• Title/Summary/Keyword: Gene transcription assay

Search Result 335, Processing Time 0.029 seconds

Assay of Epoxide Hydrolase Activity Based on PCR-linked in vitro Coupled Transcription and Translation System. (무세포 단백질합성 시스템 기반의 epoxide hydrolase 발현 및 활성 분석)

  • Lee, Ok-Kyung;Kim, Hee-Sook;Lee, Eun-Yeol
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.779-782
    • /
    • 2005
  • Cell-free expression is a powerful tool for rapid protein analysis, enabling an efficient identification of gene without cumbersome procedure of transformation and cell culture. Epoxide hydrolase (EH) gene of Rhodotorula glutinis was simply amplified by PCR, and the resultant gene was expressed in vitro using a coupled Transcription/translation system. The cell-free expressed EH protein mixture exhibited the enantioselective hydrolysis activity toward (R)-styrene oxide, representing that cell-free protein synthesis system can be used for the rapid expression of an enantioselective enzyme for an efficient identification of the chiral activity.

Reverse transcription loop-mediated isothermal amplification assay for the rapid and simultaneous detection of H5 and other subtypes of avian influenza viruses

  • Park, Yu-Ri;Kim, Eun-Mi;Han, Do-Hyun;Kang, Dae-Young;Yeo, Sang-Geon;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • A two-tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was designed for the rapid visual detection of the M gene of all subtypes of avian influenza virus (AIV) and the H5 gene of the H5 subtype of highly pathogenic AIV (HPAIV). The reaction carried out in two tubes in a single step at $58^{\circ}C$ for 40 min, and the assay results could be visually detected by using hydroxynaphthol blue dye. Using M or H5 gene-specific primers, the assay successfully detected all subtypes or H5 subtypes of AIVs, including the Korean representative H5N1 and H5N8 HPAIVs. The detection limit of the assay was approximately $10^{2.0}$ $EID_{50}/reaction$ for the M and H5 genes of H5N1 HPAIV, respectively, and was more sensitive than that of previously reported RT-LAMP and comparable to that of real-time RT-PCR. These results suggest that the present RT-LAMP assay, with its high specificity, sensitivity, and simplicity, will be a useful diagnostic tool for surveillance of currently circulating H5 HPAIVs and other subtypes of AIV in bird population, even in under-equipped laboratories.

Analysis of Promoter Elements for Transcriptional Expression of Rat p53 Gene in Regenerating Liver

  • Lee, Min-Hyung;Song, Hai-Sun;Park, Sun-Hee;Choi, Jin-Hee;Yu, Sun-Hee;Park, Jong-Sang
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.45-50
    • /
    • 1999
  • We previously found three transcription factor-binding motifs in the rat p53 promoter. They are two recognition motifs of NF1-like protein (NF1-like element 1: -296 ~ -312, NF1-like element 2: -195 ~ -219) and a bHLH protein binding element (-142 ~ -146). In this study, we investigated the DNA-protein complex formation of the three elements with nuclear extracts from both normal and regenerating liver to find the element involved in the induced transcription of p53. The level of each DNA-protein complex on NF1-like and bHLH motifs was not changed. Instead, a new element located at -264 ~ -284 was detected in the DNase I footprinting assay with regenerating nuclear extract. This element has partial homology to the AP1 consensus motif. However, the competition studies with diverse oligonucleotides suggest that the binding protein is not AP1. An in vitro transcription assay shows that this element is important for the transcriptional activation of the rat p53 promoter. Therefore, for the induced transcription of the rat p53 promoter, the-264 ~ -284 region is required in addition to two NF1-like and one bHLH motif.

  • PDF

Transcriptional Control of Lactate Dehydrogenase A-Gene Expression during the Pre-replicative Phase of Regenerating Rat Liver (백서 재생간조직의 낙산탈수소효소 A-유전자 발현의 전사활성)

  • Kim, Hae-Young;Lee, Seung-Ki
    • YAKHAK HOEJI
    • /
    • v.32 no.4
    • /
    • pp.239-244
    • /
    • 1988
  • Transcriptional rate of lactate dehydrogenase A-gene(LDH-A) during the prereplicative phase of regenerating rat liver was determined by in vitro run-off transcription assay. The results show that the transcription rate of LDH A-gene increases between 12 hours and 15 hours peaking at 13 hours after partial hepatectomy of rat liver. The increased rate of LDH A-gene transcription was interfered after DL-propranolol treatment intraperitoneally injected twice at 1 hour and 8 hours after partial hepatectomy indicating that the transcriptional control of LDH A-gene expression may be mediated by beta adrenergic receptor and cAMP as a second messenger. And also was it shown that the temporally increased rate of LDH A-gene transcription was maximum one hour after the second cAMP-surge which is known to play an important role for the initiation of DNA replication during regeneration of rat liver. And the transcriptional rate of LDH A-gene was decreased to the basal level at the time period when the hepatocytes proliferate rapidly suggesting that the induced LDH Aisozyme may be required for the initiation of DNA replication during regeneration of rat liver. These data may be supporting for the hypothesis suggesting that the induced LDH A-isozyme during the pre-replicative phase of regenerating rat liver may play bifunctional roles as a glycolytic enzyme and a helix destablizing protein as well.

  • PDF

Analysis for Regulatory Elements in Yeast MGMT Gene Transcription

  • Joo, Jae-Hoon;Kim, Woo-Jae;Rho, Jae-Kyun;Choe, Jae-Hyun;Choe, Soo-Young;Sang-Dai
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.287-295
    • /
    • 1998
  • The Saccharomyces cerevisiae MGMT gene encodes a O6-methylguanine DNA methyltransferase that protects cells from mutation or death by DNA alkylating agents. Using an in vitro transcription system, we analyzed its promoter region to find regulatory elements for transcription initiation. DNase I footprinting and a transcription assay showed that a functional TATA box, 5'-TGATATAGCA-3', is located in the region spanning from -25 to -34. We also found one upstream repressing sequence (URS), -333 to -213, by promoter deletion and competition analysis. Gel mobility shift assays and Southwestern blot analysis using URS region indicate specific complex formations. These results indicate that several cis-acting and trans-acting elements might be involved in the transcriptional regulation of the S. cerevisiae MGMT gene.

  • PDF

DNAse 1 Hypersensitive Sites of Lung Specific Transcription Factor Gene (폐특이 전사조절 유전자의 DNAse 1 Hypersensitive Sites)

  • Lee, Yong-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.6
    • /
    • pp.879-886
    • /
    • 2000
  • Background : Thyroid Transcription Factor-1(TTF-1) acts as a tissue specific transcription factor in the regulation of lung specific gene expression and as morphogenic protein during lung organogenesis. Currently, there is very little information on the cis-acting sequences and transcription factors that direct the TTF-1 gene expression. DNAse 1 hypersensitive (DH) sites represent a marker for active or potentially active chromatin and are likely to be especially important in gene regulation, being associated with many DNA sequences that regulate gene expression. It is clear that DH regions correlate with genetic regulatory loci and binding for sequence-specific DNA-binding proteins. Methods : We have used DH site assays to identify putative distal regulatory elements in H441 lung adenocarcinoma cells, which express the TTF-1 gene and HeLa cells. Results : There are four DH sites 5' of the TTF-1 gene. These sites are located at base pair approximately +150, -450, -800, and -1500 from the start of transcription. Conclusion : These data suggest that there may be at least one intragenic site and regulatory region 5' prime to the promotor region.

  • PDF

Rapid and Visual Detection of Barley Yellow Dwarf Virus by Reverse Transcription Recombinase Polymerase Amplification with Lateral Flow Strips

  • Kim, Na-Kyeong;Lee, Hyo-Jeong;Kim, Sang-Min;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.159-166
    • /
    • 2022
  • Barley yellow dwarf virus (BYDV) has been a major viral pathogen causing significant losses of cereal crops including oats worldwide. It spreads naturally through aphids, and a rapid, specific, and reliable diagnostic method is imperative for disease monitoring and management. Here, we established a rapid and reliable method for isothermal reverse transcription recombinase polymerase amplification (RT-RPA) combined with a lateral flow strips (LFS) assay for the detection of BYDV-infected oat samples based on the conserved sequences of the BYDV coat protein gene. Specific primers and a probe for RT-RPA reacted and optimally incubated at 42℃ for 10 min, and the end-labeled amplification products were visualized on LFS within 10 min. The RT-RPA-LFS assay showed no cross-reactivity with other major cereal viruses, including barley mild mosaic virus, barley yellow mosaic virus, and rice black streaked dwarf virus, indicating high specificity of the assay. The sensitivity of the RT-RPA-LFS assay was similar to that of reverse transcription polymerase chain reaction, and it was successfully validated to detect BYDV in oat samples from six different regions and in individual aphids. These results confirm the outstanding potential of the RT-RPA-LFS assay for rapid detection of BYDV.

Promoter Structure Which Affects on the Expression of Yeast MGMT Gene

  • Choe, Soo-Young
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.41-45
    • /
    • 1997
  • The present study was performed to analyze the molecular mechanism which dictates the transcription regulation of the $O^6$-methylguanine-DNA methyltransferase (MGMT) gene in Saccharomyces cerevisiae. Previously we identified one possible upstream repressing sequence (URS) in MGMT promoter by promoter deletion and competition analysis. In this paper we report another regulatory element (UAS: upstream activating sequence. -213 to -136) which affects the transcription activity of MGMT promoter. Gel mobility shift assay and Southwestern blot analysis using UAS probe showed several specific proteins which were able to bind to this sequence.

  • PDF

Analysis of Porcine $\beta$-casein Gene Promoter by Site-directed Mutagenesis

  • Chung, Hee-Kyoung;Seong, Hwan-Hoo;Im, Seok-Ki;Lee, Hyun-Gi;Kim, Soon-Jeung;Lee, Poongyeong;Lee, Yun-Keun;Chang, Won-Kyong;Moosik Kwon
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.71-71
    • /
    • 2002
  • Promoters for milk proteins have been used far producing transgenic animals due to their temporal and spatial expression patterns. ${\beta}$-casein, a calcium-sensitive casein, is a major milk protein that corresponds ca. 30 per cent of total milk protein. Expression of ${\beta}$-casein is controlled by lactogenic hormones such as prolactin (PRL), composite response elements (CoREs) and transcription factors. CoREs are clusters of transcription factor binding sites containing both positive and negative regulatory elements. ${\beta}$-casein gene promoter contains various regions (CoREs) for gene transcription. We analyzed the promoter region by mutagenesis using exonuclease III and linker-scanning. Transcription control elements usually are positioned in 5'-flanking region of the gene. However, in some cases, these elements are located in other regions such as intron 1. The nucleotide sequences of ${\beta}$-casein promote. region has been reported (E12614). However, the properties of the promoter is not yet clear. In this study, we plan to investigate the properties of cis-regulating elements of porcine ${\beta}$-casein by mutation analysis and expression analysis using dual-luciferase repoter assay system.

  • PDF

Regulation of CYP 1A1 gene expression by retinoic acid receptor, retinoid X receptor and constitutive androstane receptor in rainbow trout hepatoma cells(RTH 149)

  • Kim, Ji-Sun;Yang, So-Yeun;Seo, Mi-Jung;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.89-89
    • /
    • 2003
  • Exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a variety of biological and toxicology effects, most of which are mediated by aryl hydrocarbon receptor (AhR). The ligand-bound AhR as a heterodimer with AhR nuclear translocator (ARNT) binds to its specific DNA recognition site, the dioxin-responsive element (DRE), and it results in increased transcription of CYP1A1 gene. Retinoic acid (RA) regulates the transcription of various genes for several essential functions through binding to two classes of nuclear receptors, the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Constitutive androstane receptor (CAR) also regulates the transcription of gene. In this study, we have examined how RAR, RXR and CAR regulated CYP1A1 in rainbow trout hepatoma cell (RTH 149) using luciferase reporter gene assay system. We did transient transfection with CYP1A1 luciferase reporter gene and treated with TCDD, all-trans RA, 9-cis RA and phenobarbital. Treatment of all-trans RA, 9-cis RA or phenobarbital decreased the TCDD induced transcription of CYP1Al. When we did transient cotransfection with CYP1A1 luciferase reporter gene and RXR, as increase of RXR concentration, the TCDD induced transcription of CYP1A1 was decreased. Transfection with CAR also decreased the TCDD induced transcription of CYP1A1 in RTH 149 cells.

  • PDF