• Title/Summary/Keyword: Gene regulation

Search Result 2,196, Processing Time 0.027 seconds

Application of data fusion modeling for the prediction of auxin response elements in Zea mays for food security purposes

  • Nesrine Sghaier;Rayda Ben Ayed;Ahmed Rebai
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.45.1-45.7
    • /
    • 2022
  • Food security will be affected by climate change worldwide, particularly in the developing world, where the most important food products originate from plants. Plants are often exposed to environmental stresses that may affect their growth, development, yield, and food quality. Auxin is a hormone that plays a critical role in improving plants' tolerance of environmental conditions. Auxin controls the expression of many stress-responsive genes in plants by interacting with specific cis-regulatory elements called auxin-responsive elements (AuxREs). In this work, we performed an in silico prediction of AuxREs in promoters of five auxin-responsive genes in Zea mays. We applied a data fusion approach based on the combined use of Dempster-Shafer evidence theory and fuzzy sets. Auxin has a direct impact on cell membrane proteins. The short-term auxin response may be represented by the regulation of transmembrane gene expression. The detection of an AuxRE in the promoter of prolyl oligopeptidase (POP) in Z. mays and the 3-fold overexpression of this gene under auxin treatment for 30 min indicated the role of POP in maize auxin response. POP is regulated by auxin to perform stress adaptation. In addition, the detection of two AuxRE TGTCTC motifs in the upstream sequence of the bx1 gene suggests that bx1 can be regulated by auxin. Auxin may also be involved in the regulation of dehydration-responsive element-binding and some members of the protein kinase superfamily.

OsF3H Gene Increases Insect Resistancy in Rice through Transcriptomic Changes and Regulation of Multiple Biosynthesis Pathways

  • Rahmatullah Jan;Saleem Asif;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.287-287
    • /
    • 2022
  • In this study, we analyze RNA-seq data from OxF3Hand WT at several points (Oh, 3 h, 12 h, and 24 h) after WBPH infection. A number of the genes were further validated by RT-qPCR. Results revealed that highest number of DEGs (4,735) between the two genotypes detected after 24 h of infection. Interestingly, many of the DEGs between the WT and OsF3H under control conditions were also found to be differentially expressed in OsF3H in response to WBPH infestation. These results indicate that significant differences in gene expression between the "OxF3H" and "WT" exist as the infection time increases. Many of these DEGs were related to oxidoreductase activity, response to stress, salicylic acid biosynthesis, metabolic process, defense response to pathogen, cellular response to toxic substance, and regulation of hormones level. Moreover, genes involved in salicylic acid (SA) and Ethylene (Et) biosynthesis were upregulated in OxF3H plants while jasmonic acid (JA), Brassinosteroid (Br), and abscisic acid (ABA) signaling pathways were found downregulated in OxF3H plant during WBPH infestation. Interestingly, many DEGs related to pathogenesis such as OsPR1, OsPR1b, NPR1, OsNPR3 and OsNPR5 were found significantly upregulated in OxF3H plants. Additionally, genes related to MAPKs pathway, and about 30 WRKY genes involved in different pathways were found upregulated in OxF3H plants after WBPH infestation. This suggests that overexpression of the OxF3H gene leads to multiple transcriptomic changes and impact plant hormones, pathogenic related and secondary metabolites related genes and enhancing the plant resistance to WBPH infestation.

  • PDF

Chemical signalling within the rumen microbiome

  • Katie Lawther;Fernanda Godoy Santos;Linda B Oyama;Sharon A Huws
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.337-345
    • /
    • 2024
  • Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.

Characterization of hrp2 + Gene Related to SNF2 Family in Schizosaccharomyces pombe (Schizosaccharomyces pombe에서 SNF2에 속하는 hrp2+ 유전자의 특성 연구)

  • Park, In-Soon
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.137-141
    • /
    • 2002
  • The SNF2/SW12 family comprises proteins from a variety of species with in vivo functions, such as transcriptional regulation, maintenance of chromosome stability during mitosis, and various types of DNA repair. This study was shown the characterization of hrp2+ gene which was isolated by PCR amplification using the conserved domain of SNF2 motifs. Sequence analysis of hrp2+ gene showed striking evolutionary conservation among the SNF2 family of proteins. The transcript of hrp2+ gene was found to be a 4.7 kb as identified by Northern hybridization. In addition, to determine the transcription initiation site of hrp2+ gene, primer extension analysis was performed. This result showed the band of 64 bp. The transcriptional start point was mapped to a position of 47 base pair from the first ATG codon of translational initiation codon. In order to investigate the inducibility of hrp2+ gene, transcript levels were examined after treating the cells to various DNA damaging agents. The transcripts of hrp2+ were induced by UV-irradiation. But the transcripts were not induced by treatment of 0.25% Methylmethane sulfonate (MMS). These results implied that the effects of damaging agents are complex and different regulatory pathways exist for the induction of this gene.

  • PDF

Molecular Characterization of a thiJ-like Gene in Chinese Cabbage

  • Oh, Kyung-Jin;Park, Yong-Soon;Lee, Kyung-Ah;Chung, Yong-Je;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.343-350
    • /
    • 2004
  • A cDNA clone for a salicylic acid-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene encoding a protein of 392 amino acids contained a tandem array of two thiJ-like sequences. ThiJ is a thiamin biosynthesis enzyme that catalyzes the phosphorylation of hydroxymethylpyrimidine (HMP) to HMP monophosphate. Although the cabbage gene shows a similarity to bacterial thiJ genes, it also shares a similarity with the human DJ-1, a multifunctional protein that is involved in transcription regulation, male fertility, and parkinsonism. The cabbage thiJ-like gene is strongly induced by salicylic acid and a nonhost pathogen, Pseudomonas syringae pv. tomato, which elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with BTH, methyl jasmonate, or ethephon showed that the cabbage thiJ-like gene expression is also strongly induced by BTH, but not by methyl jasmonate or ethylene. This indicates that the cabbage gene is activated via a salicylic acid-dependent signaling pathway. Examination of the tissue-specific expression revealed that the induction of the cabbage gene expression by BTH occurs in the leaf, stem, and floral tissues but not in the root.

Functional properties of an alternative, tissue-specific promoter for rice NADPH-dependent dihydroflavonol reductase

  • Kim, Joonki;Lee, Hye-Jung;Tyagi, Wricha;Kovach, Michael;Sweeney, Megan;McCouch, Susan;Cho, Yong-Gu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.163-163
    • /
    • 2017
  • A deletion analysis of the Oryza sativa dihydroflavonol reductase (DFR) promoter defined a 25 bp region (-386 to -362) sufficient to confer pericarp-specific expression of ${\beta}$ -glucuronidase(GUS) reporter gene in transgenic rice. Site-specific mutagenesis of these conserved sequences and subsequent expression analysis in calli which transiently expressed the mutated promoter::GUS gene showed that both bHLH (-386 to -381) and Myb (-368 to -362) binding sites in the DEL3 (-440 to 70) promoter were necessary for complete expression of the GUS gene including the tissue-specific expression of DFR::GUS gene. The GUS gene was expressed well in the mutated Myb (-368 to -362) binding site, but not as strong as in normal condition, implying that the Myb is also necessary to express GUS gene fully. Also, we found the non-epistatic relation between Rc and DFR. There were no changes of expression patterns GUS under the Rc and rc genotypes. Thus, DFR expression might be independent of the presence of functional Rc gene and suggested that Rc and Rd (DFR) share the same pathway controlling the regulation of flavonoid synthesis but not a direct positive transcriptional regulator of DFR gene.

  • PDF

Scientific considerations for the biosafety of the off-target effects of gene editing in crops (유전자교정작물 내 비의도적 돌연변이의 안전성 논란에 관한 과학적 고찰)

  • Lee, Shin-Woo;Kim, Yun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.185-193
    • /
    • 2020
  • The number of commercially approved gene-edited crops is gradually increasing, and in South Korea, it has led to intense investment in gene-edited crop development to increase international competitiveness. However, as with genetically modified crops, the safety of gene-edited crops regarding unexpected risks for humans and the environment is subject to an ongoing debate. In particular, unintentional "off-target effects" have become the center of controversy. In this review, we discuss typical plant characteristics (including somatic variation and ploidy), the extent of various off-target effects in genetically modified crops generated via horizontal transfer in nature, and the off-target effects in commercial genetically modified crops. We conclude that most off-target effects possibly occurring in gene-edited crops are not expected to be critically harmful to humans or the environment. Therefore, existing regulation for genetically modified crops should be enough for the risk assessment of gene-edited crops.

DNA Polymorphism of Insulin-like Growth Factor-binding Protein-3 Gene and Its Association with Cashmere Traits in Cashmere Goats

  • Liu, Haiying;Liu, Chao;Yang, Guiqin;Li, Hui;Dai, Jin;Cong, Yuyan;Li, Xuejian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1515-1520
    • /
    • 2012
  • Insulin-like growth factor binding protein-3 (IGFBP-3) gene is important for regulation of growth and development in mammals. The present investigation was carried out to study DNA polymorphism by PCR-RFLP of IGFBP-3 gene and its effect on fibre traits of Chinese Inner Mongolian cashmere goats. The fibre traits data investigated were cashmere fibre diameter, combed cashmere weight, cashmere fibre length and guard hair length. Four hundred and forty-four animals were used to detect polymorphisms in the hircine IGFBP-3 gene. A 316-bp fragment of the IGFBP-3 gene in exon 2 was amplified and digested with HaeIII restriction enzyme. Three patterns of restriction fragments were observed in the populations. The frequency of AA, AB and BB genotypes was 0.58, 0.33 and 0.09 respectively. The allelic frequency of the A and B allele was 0.75 and 0.25 respectively. Nucleotide sequencing revealed a C>G transition in the exon 2 region of the IGFBP-3 gene resulting in R158G change which caused the polymorphism. Least squares analysis revealed a significant effect of genotypes on cashmere weight (p<0.0001), cashmere fibre length (p<0.001) and hair length (p<0.05) of the animals. The effect of genotypes on cashmere fibre diameter was not statistically significant (p>0.05). The animals of AB and BB genotypes showed higher cashmere weight, cashmere fibre length and hair length than the animals possessing AA genotype. These results suggested that polymorphisms in the hircine IGFBP-3 gene might be a potential molecular marker for cashmere weight in cashmere goats.

Construction of Genetically Engineered Microorganisms for Overexpression of xylE Gene Encoding Catechol 2,3-dioxygenase and the Functional Stability of the Recombinant Plasmid pSW3a Containing xylE in Aquatic Environment

  • Han, Hyo-Yung;Kim, Chi-Kyung;Park, Yong-Keun;Ka, Jong-Ok;Lee, Byeong-Jae;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.341-348
    • /
    • 1996
  • The regulation of xylE gene expression was examined by using vector promoter and construction of genetically engineered microorganisms (GEMs) for application in microcosm. When the xylE gene wsa subcloned into pBluscript SK(+) under the control of lac promoter (pTY1) in E. coli, and the expression was induced by IPTG, the enzyme activity of catechol 2, 3-dioxygenase was increased 4.7 times more than that of the crude extracts from transformants harboring pTY1. We suggest that the xylE gene has its own promoter at the upstream portion, because it was able to be expressed even in the absence of IPTG. A recombinant plasmid, pSW3a harboring the xylE gene under the T7 promotor, showed the activity of 14.5 units/mg protein, higher than that of parental strain, E. coli PYT1. The xylE gene in recombinant plasmid pSW3a was used as reporter gene for the application in microcosm ecosystem, since it was used for detection of xylE-positive clones by catechol spray on the agar plates. The pSW3a in E. coli was introduced into Pseudomonas patida to construct GEM strain, and examined for the exxpression and functional stability in microcosms.

  • PDF

The Effects of DHEA on the Antiobesity and Obese Gene Expression in Lean and Genetically Obese(ob/ob) Mice (DHEA의 항비만 효능 및 ob 유전자(leptin)의 발현에 미치는 영향)

  • 정기경;신미희;한형미;강석연;김태균;강주혜;문애리;김승희
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2000
  • Leptin, the product of the ob gene, is a small peptide molecule synthesized by white adipocytes with an important role in the regulation of body fat and food intake. Based on the evidence that synthesis of leptin is regulated by female sex hormone, estrogen, this present study was investigated whether sex hormone precursor DHEA, can regulate obese gene expression in lean and genetically obese (ob/ob) mice. Antiobesity activity of DHEA was evaluated by determining body weight, food consumption, epididymal fat weight and serum levels of cholesterol and triglyceride in ICR, C57BL/6J, and ob/ob mice. The treatment of C57BL/6J lean and obese mice with a diet containing 0.3% and 0.6% DHEA resulted in lowered rates of weight gain in comparison to non-treated mice, although much greater response was found in the obese mice. All other concentrations of DHEA (0.015%, 0.06%, 0.15%, 0.3%) except the highest one(0.6%) showed no significant effects on weight gain in ICR mice. Food consumption was significantly decreased in all mice treated with 0.6% DHEA, whereas it was not decreased in ICR mice at lower concentrations than 0.6% DHEA. DHEA decreased significantly epididymal adipose tissue weight and serum triglyceride levels dose dependently in lean and obese mice. However serum cholesterol levels were decreased at lower concentrations than 0.15% DHEA and increased at concentrations of 0.3% and 0.6% DHEA in lean and obese mice. These increases in serum cholestrol levels at high concentrations of DHEA might result from the fact that DHEA has a cholesterol moiety thereby interfered the assay system. As an approach to elucidate the mechanism for antiobesity activity of DHEA, we examined mRNA levels of obese gene in the adipocyte and obese gene product (leptin) in the serum. The results showed that DHEA did not affect obese gene expression in ICR and C57BL/6J mice. Therefore, we concluded that antiobesity activity of DHEA was not modulated by obese gene expression.

  • PDF