• 제목/요약/키워드: Gene regulation

검색결과 2,207건 처리시간 0.037초

Characterization and Regulation of the Gene Encoding Monothiol Glutaredoxin 3 in the Fission Yeast Schizosaccharomyces pombe

  • Moon, Jeong-Su;Lim, Hye-Won;Park, Eun-Hee;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • 제20권1호
    • /
    • pp.74-82
    • /
    • 2005
  • Glutaredoxins (Grxs) are thioloxidoreductases which are required for maintaining thiol/disulfide equilibrium in living cells. The Grx3 gene, which encodes one of the three monothiol Grxs in the fission yeast Schizosaccharomyces pombe, was characterized, and its transcriptional regulation studied. Genomic DNA encoding Grx3 was isolated by PCR, and a plasmid pTT3 carrying this DNA was produced. The DNA sequence has 1,267 bp, which would encode a monothiol Grx of 166 amino acids with a molecular mass of 18.3 kDa. The putative protein has 27% homology with Grx5, and contains many hydrophobic amino acid residues in its N-terminal region. S. pombe cells harboring pTT3 had increased Grx activity and enhanced survival on minimal medium plates containing aluminum (5 mM), BSO (0.05 mM), menadione (0.01 mM) or cadmium (0.2 mM). The 568 bp upstream region of Grx3 was fused into the promoterless b-galactosidase gene of the shuttle vector YEp367R to generate fusion plasmid pMJS10. Potassium chloride (KCl) and metals including aluminum and cadmium enhanced the synthesis of ${\beta}$-galactosidase from the fusion gene. The synthesis of ${\beta}$-galactosidase was also enhanced, in a Pap1-dependent manner, by fermentable carbon sources such as glucose (at low concentrations) and sucrose, but not by non-fermentable carbon sources such as ethanol and acetate. Grx3 mRNA increased in response to treatment with BSO. These observations indicate that S. pombe Grx3 is involved in the response to stress, and is regulated by stress.

Effect of 24 h Fasting on Gene Expression of AMPK, Appetite Regulation Peptides and Lipometabolism Related Factors in the Hypothalamus of Broiler Chicks

  • Lei, Liu;Lixian, Zhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권9호
    • /
    • pp.1300-1308
    • /
    • 2012
  • The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a key part of a kinase-signaling cascade that acts to maintain energy homeostasis. The objective of this experiment was to investigate the possible effects of fasting and refeeding on the gene expression of hypothalamic AMPK, some appetitive regulating peptides and lipid metabolism related enzymes. Seven-day-old male broiler (Arbor Acres) chicks were allocated into three equal treatments: fed ad libitum (control); fasted for 24 h; fasted for 24 h and then refed for 24 h. Compared with the control, the hypothalamic gene expression of $AMPK{\alpha}2$, $AMPK{\beta}1$, $AMPK{\beta}2$, $AMPK{\gamma}1$, Ste20-related adaptor protein ${\beta}$ ($STRAD{\beta}$), mouse protein $25{\alpha}$ ($MO25{\alpha}$) and agouti-related peptide (AgRP) were increased after fasting for 24 h. No significant difference among treatments was observed in mRNA levels of $AMPK{\alpha}1$, $AMPK{\gamma}2$, LKB1 and neuropeptide Y (NPY). However, the expression of $MO25{\beta}$, pro-opiomelanocortin (POMC), corticotropin-releasing hormone (CRH), ghrelin, fatty acid synthase (FAS), acetyl-CoA carboxylase ${\alpha}$ ($ACC{\alpha}$), carnitine palmitoyltransferase 1 (CPT-1) and sterol regulatory element binding protein-1 (SREBP-1) were significantly decreased. The present results indicated that 24 h fasting altered gene expression of AMPK subunits, appetite regulation peptides and lipometabolism related factors in chick's hypothalamus; the hypothalamic FAS signaling pathway might be involved in the AMPK regulated energy homeostasis and/or appetite regulation in poultry.

Chlorosis of Ogura-CMS Brassica rapa is due to down-regulation of genes for chloroplast proteins

  • Jeong, Seok-Won;Yi, Hankuil;Song, Hayoung;Lee, Soo-Seong;Park, Youn-Il;Hur, Yoonkang
    • Journal of Plant Biotechnology
    • /
    • 제44권2호
    • /
    • pp.115-124
    • /
    • 2017
  • Cytoplasmic male sterility (CMS) is a maternally inherited trait leading to loss of the ability to produce fertile pollen and is extensively used in hybrid crop breeding. Ogura-CMS was originally generated by insertion of orf138 upstream of atp8 in the radish mitochondrial genome and transferred to Brassica crops for hybrid breeding. Gene expression changes by dysfunctional mitochondria in Ogura-CMS result in pollen developmental defects, but little is known about gene expression patterns in vegetative tissue. To examine the interaction between nuclear and organellar regulation of gene expression, microarray and subsequent gene expression experiments were conducted with leaves of $F_1$ hybrid Chinese cabbage derived from self-incompatible (SI) or Ogura-CMS parents (Brassica rapa ssp. pekinensis). Out of 24,000 genes deposited on a KBGP24K microarray, 66 genes were up-regulated and 26 genes were down-regulated by over 2.5 fold in the CMS leaves. Up-regulated genes included stress-response genes and mitochondrial protein genes, while genes for ascorbic acid biosynthesis and thylakoid proteins were down-regulated. Most of the major component genes for light reactions of photosynthesis were highly expressed in leaves of both SI and CMS plants, but most of the corresponding proteins were found to be greatly reduced in leaves of CMS plants, indicating posttranscriptional regulation. Reduction in thylakoid proteins and chlorophylls led to reduction in photosynthetic efficiency and chlorosis of Ogura-CMS at low temperatures. This research provides a foundation for studying chloroplast function regulated by mitochondrial signal and for using organelle genome introgression in molecular breeding.