• Title/Summary/Keyword: Gene polymorphisms

Search Result 1,053, Processing Time 0.022 seconds

Polymorphic Variation in Glutathione-S-transferase Genes and Risk of Chronic Myeloid Leukaemia in the Kashmiri Population

  • Bhat, Gulzar;Bhat, Ashaqullah;Wani, Aadil;Sadiq, Nida;Jeelani, Samoon;Kaur, Rajinder;Masood, Akbar;Ganai, Bashir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.69-73
    • /
    • 2012
  • Cancer is a complex disease and the genetic susceptibility to it could be an outcome of the inherited difference in the capacity of xenobiotic metabolizing enzymes. Glutathione-S-transferases (GSTs) are phase II metabolizing enzymes whose various genotypes have been associated with increased risk of different types of cancer. Null mutations caused by the deletion of the entire gene result in the absence of the enzymatic activity and increase in the risk of developing cancer including chronic myeloid leukaemia (CML). In the present case-control study we evaluated the effect of null mutations in GSTM1 and GSTT1 genes on the risk of developing CML. The study included 75 CML patients (43 males and 32 females; age (mean ${\pm}$ S.D) $42.3{\pm}13.4$ years) and unrelated non-malignant controls (76 male and 48 females; age (mean ${\pm}$ S.D) $41.5{\pm}12.9$). The distribution of GSTM1 and GSTT1 genotypes in CML patients and controls was assessed by multiplex-PCR method. Logistic regression was used to assess the relationship between GSTM1 and GSTT1 genotypes and risk of CML. Chi-square test was used to evaluate the trend in modulating the risk to CML by one or more potential high risk genotype. Although GSTM1 null genotype frequency was higher in CML patients (41%) than in the controls (35%), it did not reached a statistical significance (OD = 1.32, 95% CI: 0.73-2.40; P value = 0.4295). The frequency of GSTT1 null genotypes was higher in the CML patients (36%) than in the controls (21%) and the difference was found to be statistically significant (OD = 2.12, 95% CI: 1.12-4.02; P value = 0.0308). This suggests that the presence of GSTT1genotype may have protective role against the CML. We found a statistically significant (OD = 3.09, 95% CI: 1.122-8.528; P value = 0.0472) interaction between the GSTM1 and GSTT1 null genotypes and thus individuals carrying null genotypes of both GSTM1 and GSTT1 genes are at elevated risk of CML.

Analysis of Populus cpDNA by Restriction Fragment Length Polymorphism(RFLP) Technique (RFLP기법(技法)을 이용(利用)한 포플러 엽록체(葉綠體) DNA의 분석(分析))

  • Lee, J.S.;Noh, E.W.;Lee, S.K.;Kwon, K.W.
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.1
    • /
    • pp.20-24
    • /
    • 1994
  • In woody species with a long life span, the studies on inheritance of any trait may be very time consuming and laborious. Chloroplast DNA(cpDNA) has been a valuable tool in such studies since it has several unique features such as limited genome size and cytoplasmic inheritance. In the present study, cpDNAs from five different species of Populus(P. alba, P. glandulosa, P. alba${\times}$P. glandulosa, P. davidiana, and P. nigra), and Nicotiana tabacum were compared with regard to restriction fragment length polymophism. The results showed that cpDNAs among the species were very conserved, although some polymorphisms were observed when the DNAs were digested with restriction enzyme EcoRI or KphI. The other enzymes (Bgl II, and PstI) tested produced identical restriction fragmentation pattern among the species. However, cpDNAs from all the five Populus species showed different restriction fragmentation pattern from that of tobacco with the four restriction enzymes tested. Southern hybridization with tobacco rbcL gene fragment as a probe also produced identical pattern among Populus species. The results indicate that cpDNAs in the genus are very well conserved during evolution.

  • PDF

Mutations in Streptomycin Resistance Genes and Their Relationship to Streptomycin Resistance and Lineage of Mycobacterium tuberculosis Thai Isolates

  • Hlaing, Yin Moe;Tongtawe, Pongsri;Tapchaisri, Pramuan;Thanongsaksrikul, Jeeraphong;Thawornwan, Unchana;Archanachan, Buppa;Srimanote, Potjanee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.2
    • /
    • pp.159-168
    • /
    • 2017
  • Background: Streptomycin (SM) is recommended by the World Health Organization (WHO) as a part of standard regimens for retreating multidrug-resistant tuberculosis (MDR-TB) cases. The incidence of MDR-TB in retreatment cases was 19% in Thailand. To date, information on SM resistance (SMR) gene mutations correlated to the SMR of Mycobacterium tuberculosis Thai isolates is limited. In this study, the mutations in rpsL, rrs, gidB, and whiB7 were investigated and their association to SMR and the lineage of M. tuberculosis were explored. Methods: The lineages of 287 M. tuberculosis collected from 2007 to 2011 were identified by spoligotyping. Drug susceptibility profiles were evaluated by the absolute concentration method. Mutations in SMR genes of 46 SM-resistant and 55 SM-susceptible isolates were examined by DNA sequencing. Results: Three rpsL (Lys43Arg, Lys88Arg, and Lys88Thr) and two gidB (Trp45Ter and Gly69Asp) mutations were present exclusively in the SM resistant M. tuberculosis. Lys43Arg rpsL was the most predominant SMR mutations (69.6%) and prevailed among Beijing isolates (p<0.001). No SMR-related mutation in was found rrs. The combination of rpsL and gidB mutations provided 76.1% sensitivity for detecting SMR in M. tuberculosis Thai isolates. whiB7 was not responsible for SMR in SM resistant isolates lacking rpsL and rrs mutations. The significance of the three gidB mutations, 276A>C, 615A>G, and 330G>T, as lineage signatures for Beijing and EAI were underscored. This study identified 423G>A gidB as a novel sub-lineage marker for EAI6-BGD1. Conclusion: Our study suggested that the majority of SMR in M. tuberculosis Thai isolates were responsible by rpsL and gidB polymorphisms constantly providing the novel lineage specific makers.

Analysis of Single Nucleotide Polymorphism of eNOS Genes in Korean Genome (한국인의 eNOS 유전자 SNP 분석)

  • Lee, Hyung-Ran;Kim, Su-Won;Yoo, Min
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.181-185
    • /
    • 2014
  • We identified SNPs (single nucleotide polymorphisms) for endothelial nitric oxide synthase (eNOS) genes in the Korean genome. eNOS is present in the vascular endothelium, platelets, and several other cell types that continuously produce modest amounts of NO. Endothelium-derived NO plays a key role in the regulation of vascular tone, and the impaired effects of NO on the cardiovascular system appear to be responsible for coronary atherosclerosis and thrombosis. In recent studies, a missense variant within exon 7 of the eNOS gene in patients with coronary spastic angina-GAG to GAT substitution, which results in the replacement of glutamic acid by aspartic acid (Glu298Asp [G894T])-has been identified and is known to be significantly associated with coronary spasm. We prepared PCR primers based on sequences in Genbank. Primers were prepared for normal and SNPs separately, as reported for other Asian countries, such as G894T. Their sequences were different only at the 3' ends so that primer extension could only by possible when base pairs between templates and primers matched. We also employed ARMS (Amplification Refractory Mutation System) technology to improve the specificity of the PCR reaction. In conclusion, we were able to demonstrate the eNOS G894A polymorphism in Korean gemone. This study should facilitate research on the cause of myocardial infarction and development on further therapy at the genetic level.

PCR and RFLP-based CYP2D6(B) and CYP2D6(T) Genotyping for Korean Lung Cancer Cases and Controls (한국인 폐암환자와 대조군의 CYP2D6 유전적 다형성에 관한 연구)

  • Chun, Jin-Ho;Lee, Chang-Hee;Urm, Sang-Hwa;Son, Byung-Chul;Park, Jun-Han;Jung, Kui-Oak;Sohn, Chang-Hak;Yoon, Hye-Kyoung;Son, Choon-Hee;Kim, Hyung-In;Jeong, Jin-Sook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.1 s.60
    • /
    • pp.1-14
    • /
    • 1998
  • The genetically determined CYP2D6 activity as considered to be associated with cancer susceptibility with inter-individual variation. Genetic polymorphism of CYP2D6(B) and CYP2D6(T) was determined by the two polymerase chain reaction(PCR) and BstN1 and EcoN1 restriction fragment length polymorphisms(RFLP) for 67 lung cancer cases and 95 healthy volunteer controls. The cases were composed of 26 squamous cell carcinoma, 14 small cell carcinoma, 10 adenocarcinoma, 3 large cell undifferentiated carcinoma, and 14 not histologically diagnosed. The results were gained from the 142 subjects (57 cases and 85 controls) who observed successfully in two PCR and BstNl/EcoN1 RELP. Only one and no mutant allele of the CYP2D6(B) and CYP2D6(T) gene was detected, that is, the frequency of mutant allele was very low; 0.7%(1/142) and 0%(0/142), respectively. Detected mutant allele of the CYP2D6(B) was beterozygous type(WM). The odds ratios for lung cancer susceptibility with CYP2D6(B) and CYP2D6(T) genotype were not calculated. These results are similar to the previous understanding that the mutant allele is very rare in Orientals compared to Caucasians, therefore, it considered that CYP2D6(B) and CYP2D6(T) genotypes have maybe no association with lung cancer susceptibility in Koreans. This is the basic data of CYP2D6(B) and CYP2D6(T) genotypes for Koreans. It would be hepful for further study to determine lung cancer susceptibility of Koreans with the data about CYP1A1, CYP2E1, GSTM1 from future study.

  • PDF

Glutathione S-transferase polymorphism of neonatal hyperbilirubinemia in Korean neonates (한국인 신생아 황달과 Glutathione S-transferase 다형성에 관한 연구)

  • Kang, Chang Seok;Hong, Seung Su;Kim, Ji Sook;Kim, Eun Ryoung
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.3
    • /
    • pp.262-266
    • /
    • 2008
  • Purpose : Glutathione S-transferase (GST) is a polymorphic supergene family of detoxification enzymes that are involved in the metabolism of numerous diseases. Several allelic variants of GSTs show impaired enzyme activity and are suspected to increase the susceptibility to diseases. Bilirubin is bound efficiently by GST members. The most commonly expressed gene in the liver is GSTM1, and GSTT1 is expressed predominantly in the liver and kidneys. To ascertain the relationship between GST and neonatal hyperbilirubinemia, the distribution of the polymorphisms of GSTT1 and GSTM1 were investigated in this study. Methods : Genomic DNA was isolated from 88 patients and 186 healthy controls. The genotypes were analyzed by polymerase chain reaction (PCR). Results : The overall frequency of the GSTM1 null was lower in patients compared to controls (P=0.0187, Odds ratio (OR) =0.52, 95% confidence interval (CI), 0.31-0.88). Also, the GSTT1 null was lower in patients compared to controls (P=0.0014, OR=0.41, 95% CI=0.24-0.70). Moreover, the frequency of the null type of both, in the combination of GSTM1 and GSTT1, was significantly reduced in jaundiced patients (P=0.0008, OR=0.31, 95% CI=0.17-0.61). Conclusion : We hypothesized that GSTM1 and GSTT1 might be associated with neonatal hyperbilirubinemia. However, the GSTT1 and GSTM1 null type was reduced in patients. Therefore the null GSTT1, null GSTM1, and null type of both in the combination of GSTM1 and GSTT1 may be not a risk factor of neonatal jaundice.

Polymorphisms of 5,10-Methylenetetrahydrofolate Reductase (MTHFR C677T and A1298C) Gene in Recurrent Spontaneous Abortion (5,10-Methylenetetrahydrofolate Reductase (MTHFR C677T와 A1298C) 유전자 돌연변이의 반복자연유산 관련성 연구)

  • Kim, Nam-Keun;Nam, Yoon-Sung;Lee, Su-Man;Kim, Sun-Hee;Shin, Seung-Joo;Chang, Sung-Woon;Kim, Se-Hyun;Cha, Kwang-Yul;Oh, Do-Yeun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.3
    • /
    • pp.215-222
    • /
    • 2002
  • Objective : Previous studies have suggested that hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR C677T) mutations are associated with increased risk of recurrent spontaneous abortion (RSA). Recently, a second site polymorphism in MTHFR, 1298A-->C, which changes a glutamic acid into an alanine residue, was shown to be associated with a decreased enzyme activity. We tested whether the variant alleles of MTHFR C677T and A1298C are risk factor (biomarker) for RSA. Materials and Methods: We analyzed DNA from a case-control study in the Korean DNA was extracted from blood samples of 118 patients with RSA and 123 healthy fertile patients as the controls. MTHFR variant alleles were determined by a PCR-restriction fragment length polymorphism assay. Results: We found no evidence for an association between 677TT genotype and risk of RSA (OR=1.95, 95% CI=$0.84{\sim}4.50$, p=0.12). However, the MTHFR 1298AC (OR=0.36, 95% CI=$0.20{\sim}0.63$, p=0.0004) and 1298AC+CC (OR=0.35, 95% CI=$0.20{\sim}0.61$, p=0.0002) genotypes were lower among 118 RSA cases compared with 123 controls, conferring a 2.8-fold decrease in risk of RSA, respectively. Moreover, the combined genotypes of MTHFR 677CC/1298AC (OR=0.30, 95% CI=$0.10{\sim}0.88$, p=0.029) and 677CT/1298AC (OR=0.77, 95% CI=$0.60{\sim}0.99$, p=0.043) also showed significantly lower risk than those with MTHFR 677CC/1298AA type. Conclusion: MTHFR 1298AC, MTHFR 677CC/1298AC and 677CT/1298AC genotypes may represent genetic markers for the protection of RSA at least in Korean women.

Selection signature reveals genes associated with susceptibility loci affecting respiratory disease due to pleiotropic and hitchhiking effect in Chinese indigenous pigs

  • Xu, Zhong;Sun, Hao;Zhang, Zhe;Zhang, Cheng-Yue;Zhao, Qing-bo;Xiao, Qian;Olasege, Babatunde Shittu;Ma, Pei-Pei;Zhang, Xiang-Zhe;Wang, Qi-Shan;Pan, Yu-Chun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.187-196
    • /
    • 2020
  • Objective: Porcine respiratory disease is one of the most important health problems causing significant economic losses. To understand the genetic basis for susceptibility to swine enzootic pneumonia (EP) in pigs, we detected 102,809 single nucleotide polymorphisms in a total of 249 individuals based on genome-wide sequencing data. Methods: Genome comparison of susceptibility to swine EP in three pig breeds (Jinhua, Erhualian, and Meishan) with two western lines that are considered more resistant (Duroc and Landrace) using cross-population extended haplotype homozygosity and F-statistic (FST) statistical approaches identified 691 positively selected genes. Based on quantitative trait loci, gene ontology terms and literature search, we selected 14 candidate genes that have convincible biological functions associated with swine EP or human asthma. Results: Most of these genes were tested by several methods including transcription analysis and candidate genes association study. Among these genes: cytochrome P450 1A1 and catenin beta 1 (CTNNB1) are involved in fertility; transforming growth factor beta receptor 3 plays a role in meat quality traits; Wnt family member 2, CTNNB1 and transcription factor 7 take part in adipogenesis and fat deposition simultaneously; plasminogen activator, urokinase receptor (completely linked to AXL receptor tyrosine kinase, r2 = 1) plays an essential role in the successful ovulation of matured oocytes in pigs; colipase like 2 (strongly linked to SAM pointed domain containing ETS transcription factor, r2 = 0.848) is involved in male fertility. Conclusion: These adverse genes susceptible to swine EP may be selected while selecting for economic traits (especially reproduction traits) due to pleiotropic and hitchhiking effect of linked genes. Our study provided a completely new point of view to understand the genetic basis for susceptibility or resistance to swine EP in pigs thereby, provides insight for designing sustainable breed selection programs. Finally, the candidate genes are crucial due to their potential roles in respiratory diseases in a large number of species, including human.

Secretion and Expression of Matrix Metalloproteinase-2 and 9 from Bone Marrow Mononuclear Cells in Myelodysplastic Syndrome and Acute Myeloid Leukemia

  • Chaudhary, Ajay K;Chaudhary, Shruti;Ghosh, Kanjaksha;Shanmukaiah, Chandrakala;Nadkarni, Anita H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1519-1529
    • /
    • 2016
  • Background: Matrix metalloproteinase -2 (gelatinase-A, Mr 72,000 type IV collagenase, MMP-2) and -9 (gelatinase-B, Mr 92,000 type IV collagenase, MMP-9) are key molecules that play roles in tumor growth, invasion, tissue remodeling, metastasis and stem-cell regulation by digesting extracellular matrix barriers. MMP-2 and -9 are well known to impact on solid cancer susceptibility, whereas, in hematological malignancies, a paucity of data is available to resolve the function of these regulatory molecules in bone marrow mononuclear cells (BM-MNCs) and stromal cells of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Objectives: The present study aimed to investigate mRNA expression and gelatinase A and B secretion from BM-MNCs in vitro and genotypic associations of MMP-2 (-1306 C/T; rs243865), MMP-9 (-1562 C/T; rs3918242), tissue inhibitor of metalloproteinase -1 (TIMP-1) (372T/C; rs4898, Exon 5) and TIMP-2 (-418G/C; rs8179090) in MDS and AML. Results: The study covered cases of confirmed MDS (n=50), AML (n=32) and healthy controls (n=110). MMP-9 mRNA expression revealed 2 fold increased expression in MDS-RAEB II and 2.5 fold in AML M-4 (60-70% blasts). Secretion of gelatinase-B also revealed the MMP-9 mRNA expression and ELISA data also supported these data. We noted that those patients having more blast crises presented with more secretion of MMP-9 and its mRNA expression. In contrast MMP-9 (-1562 C/T) showed significant polymorphic associations in MDS (p<0.02) and AML (p<0.02). MMP-9 mRNA expression of C/T and T/T genotypes were 1.5 and 2.5 fold increased in MDS and AML respectively. In AML, MMP-2 C/T and T/T genotypes showed 2.0 fold mRNA expression. Only MMP-9 (-1306 C/T) showed significant 4 fold (p<0.001) increased risk with chemical and x-ray exposed MDS, while tobacco and cigarette smokers have 3 fold (p<0.04) risk in AML. Conclusions: In view of our results, MMP-9 revealed synergistic secretion and expression in blast crises of MDS and AML with 'gene' polymorphic effects and is significantly associated with increased risk with tobacco, cigarette and environmental exposure. Release and secretion of these enzymes may influence hematopoietic cell behavior and may be important in the clinical point of view. It may offer valuable tools for diagnosis and prognosis, as well as possible targets for the treatments.

A Parentage Test using Indel, Microsatellite Markers and Genotypes of MC1R in the Jeju Black Cattle Population (제주 흑우 집단에서 Indel, Microsatellite 마커와 MC1R 유전자형을 이용한 친자 확인)

  • Han, Sang Hyun;Cho, Sang-Rae;Cho, In-Cheol;Cho, Won-Mo;Kim, Sang-Geum;Yang, Sung-Nyun;Kang, Yong-Jun;Park, Yong-Sang;Kim, Young-Hoon;Park, Se-Phil;Kim, Eun-Young;Lee, Sung-Soo;Ko, Moon-Suck
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.207-213
    • /
    • 2013
  • This study was carried out to examine a molecular marker system for parentage test in Jeju Black cattle (JBC). Based on the preliminarily studies, we finally selected for construction of a novel genetic marker system for molecular traceability, identity test, breed certification, and parentage test in JBC and its related industrial populations. The genetic marker system had eight MS markers, five indel markers, and two single nucleotide polymorphisms (SNPs; g.G299T and g.del310G) within MC1R gene which is critical to verify the breed specific genotypes for coat color of JBC differing from those of exotic black cattle breeds such as Holstein and Angus. The results showed lower level of a combined non-exclusion probability for second parent (NE-P2) of $4.1202{\times}10^{-4}$ than those previously recommended by International Society of Animal Genetics (ISAG) of $5.000{\times}10^{-4}$ for parentage, and a combined non-exclusion probability for sib identity (NE-SI) of $2.679{\times}10^{-5}$. Parentage analysis has been successfully identified the JBC offspring in the indigenous population and cattle farms used the certified AI semens for production using the JBC-derived offspring for commercial beef. This combined molecular marker system will be helpful to supply genetic information for parentage test and traceability and to develop the molecular breeding system for improvement of animal productivity in JBC population.