• 제목/요약/키워드: Gene panel

검색결과 80건 처리시간 0.026초

A frameshift mutation in the TRPS1 gene showing a mild phenotype of trichorhinophalangeal syndrome type 1

  • Park, Jin-Mo;Lee, Yun Jeong;Park, Jin-Sung
    • Journal of Genetic Medicine
    • /
    • 제15권2호
    • /
    • pp.97-101
    • /
    • 2018
  • Tricho-rhino-phalangeal syndrome (TRPS) is a hereditary disorder characterized by craniofacial and skeletal abnormalities. A mutation of the TRPS1 gene leads to TRPS type I or type III. A 20-year-old male patient visited our neurologic department with chronic fatigue. He presented with short stature, sparse hair, pear-shaped nose, and brachydactyly. Radiologic study showed short metacarpals, metatarsals with cone-shaped epiphyses, hypoplastic femur and hip joint. Panel sequencing for OMIM (Online Mendelian Inheritance in Man) listed genes revealed a de novo heterozygous frameshift mutation of c.1801_1802delGA (p.Arg601Lysfs*3) of exon 4 of the TRPS1 gene. The diagnosis of TRPS can be challenging due to the rarity and variable phenotype of the disease, clinicians should be aware of its characteristic clinical features that will lead a higher rate of diagnosis.

Recent Advances in the Clinical Application of Next-Generation Sequencing

  • Ki, Chang-Seok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Next-generation sequencing (NGS) technologies have changed the process of genetic diagnosis from a gene-by-gene approach to syndrome-based diagnostic gene panel sequencing (DPS), diagnostic exome sequencing (DES), and diagnostic genome sequencing (DGS). A priori information on the causative genes that might underlie a genetic condition is a prerequisite for genetic diagnosis before conducting clinical NGS tests. Theoretically, DPS, DES, and DGS do not require any information on specific candidate genes. Therefore, clinical NGS tests sometimes detect disease-related pathogenic variants in genes underlying different conditions from the initial diagnosis. These clinical NGS tests are expensive, but they can be a cost-effective approach for the rapid diagnosis of rare disorders with genetic heterogeneity, such as the glycogen storage disease, familial intrahepatic cholestasis, lysosomal storage disease, and primary immunodeficiency. In addition, DES or DGS may find novel genes that that were previously not linked to human diseases.

Direct Evaluation of the Effect of Gene Dosage on Secretion of Protein from Yeast Pichia pastoris by Expressing EGFP

  • Liu, Hailong;Qin, Yufeng;Huang, Yuankai;Chen, Yaosheng;Cong, Peiqing;He, Zuyong
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권2호
    • /
    • pp.144-151
    • /
    • 2014
  • Increasing the gene copy number has been commonly used to enhance the protein expression level in the yeast Pichia pastoris. However, this method has been shown to be effective up to a certain gene copy number, and a further increase of gene dosage can result in a decrease of expression level. Evidences indicate the gene dosage effect is product-dependent, which needs to be determined when expressing a new protein. Here, we describe a direct detection of the gene dosage effect on protein secretion through expressing the enhanced green fluorescent protein (EGFP) gene under the direction of the ${\alpha}$-factor preprosequence in a panel of yeast clones carrying increasing copies of the EGFP gene (from one to six copies). Directly examined under fluorescence microscopy, we found relatively lower levels of EGFP were secreted into the culture medium at one copy and two copies, substantial improvement of secretion appeared at three copies, plateau happened at four and five copies, and an apparent decrease of secretion happened at six copies. The secretion of EGFP being limiting at four and five copies was due to abundant intracellular accumulation of proteins, observed from the fluorescence image of yeast and confirmed by western blotting, which significantly activated the unfolded protein response indicated by the up-regulation of the BiP (the KAR2 gene product) and the protein disulfide isomerase. This study implies that tagging a reporter like GFP to a specific protein would facilitate a direct and rapid determination of the optimal gene copy number for high-yield expression.

Interaction between Smoking and the STAB2 Gene in the Severity of Rheumatoid Arthritis

  • Min, Jin-Young;Min, Kyoung-Bok;Sung, Joo-Hon;Cho, Sung-Il
    • Genomics & Informatics
    • /
    • 제7권1호
    • /
    • pp.20-25
    • /
    • 2009
  • Rheumatoid arthritis (RA) is a chronic autoimmune disorder that is characterized by inflammation of the synovial tissue and deterioration of the joint and bone. A recent study reported a potential gene-environment interaction between HLA-DR and smoking. The present study investigated whether a specific gene was related to the association between smoking and the severity of RA (rheumatoid factor levels > 20 IU/ml). We used the resources of the NARAC family collection of GAW 15 databases, and 1139 subjects with RF>20 IU/ml were included in the current analysis. The linkage panel contained 5858 SNP markers, and 5744 SNPs passed quality control criteria. Linear regression analyses, using PLINK software and generalized estimating equation regression models, were used to test for associations between the SNPs and the severity of RA according to smoking groups. Two major findings were established. First, the severity of RA in smokers was associated with rs703618 (p=$6{\times}10^{-5}$), which lies in the intronic region of the stabilin 2 (STAB2) gene on chromosome 12. Second, there were significant differences in the levels of RF between 'ever smokers' and 'never smokers' according to the rs703618 genotype (G/G, A/G, A/A). We investigated whether a specific gene acts as a mediator between smoking and the severity of RA and found that the STAB2 gene could affect this relationship. Our finding indicates that smoking may mediate RA severity by affecting the expression level of a specific gene.

Very Early-Onset Inflammatory Bowel Disease: A Challenging Field for Pediatric Gastroenterologists

  • Arai, Katsuhiro
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제23권5호
    • /
    • pp.411-422
    • /
    • 2020
  • With the increasing number of children with inflammatory bowel disease (IBD), very early-onset IBD (VEO-IBD), defined as IBD that is diagnosed or that develops before 6 years of age, has become a field of innovation among pediatric gastroenterologists. Advances in genetic testing have enabled the diagnosis of IBD caused by gene mutations, also known as monogenic or Mendelian disorder-associated IBD (MD-IBD), with approximately 60 causative genes reported to date. The diagnosis of VEO-IBD requires endoscopic and histological evaluations. However, satisfactory small bowel imaging studies may not be feasible in this small population. Both genetic and immunological approaches are necessary for the diagnosis of MD-IBD, which can differ among countries according to the available resources. As a result of the use of targeted gene panels covered by the national health insurance and the nationwide research project investigating inborn errors of immunity, an efficient approach for the diagnosis of MD-IBD has been developed in Japan. Proper management of VEO-IBD by pediatric gastroenterologists constitutes a challenge. Some MD-IBDs can be curable by allogenic hematopoietic stem cell transplantation. With an understanding of the affected gene functions, targeted therapies are being developed. Social and psychological support systems for both children and their families should also be provided to improve their quality of life. Multidisciplinary team care would contribute to early diagnosis, proper therapeutic interventions, and improved quality of life in patients and their families.

Genetic tests by next-generation sequencing in children with developmental delay and/or intellectual disability

  • Han, Ji Yoon;Lee, In Goo
    • Clinical and Experimental Pediatrics
    • /
    • 제63권6호
    • /
    • pp.195-202
    • /
    • 2020
  • Developments in next-generation sequencing (NGS) techogies have assisted in clarifying the diagnosis and treatment of developmental delay/intellectual disability (DD/ID) via molecular genetic testing. Advances in DNA sequencing technology have not only allowed the evolution of targeted panels but also, and more currently enabled genome-wide analyses to progress from research era to clinical practice. Broad acceptance of accuracy-guided targeted gene panel, whole-exome sequencing (WES), and whole-genome sequencing (WGS) for DD/ID need prospective analyses of the increasing cost-effectiveness versus conventional genetic testing. Choosing the appropriate sequencing method requires individual planning. Data are required to guide best-practice recommendations for genomic testing, regarding various clinical phenotypes in an etiologic approach. Targeted panel testing may be recommended as a firsttier testing approach for children with DD/ID. Family-based trio testing by WES/WGS can be used as a second test for DD/ID in undiagnosed children who previously tested negative on a targeted panel. The role of NGS in molecular diagnostics, treatment, prediction of prognosis will continue to increase further in the coming years. Given the rapid pace of changes in the past 10 years, all medical providers should be aware of the changes in the transformative genetics field.

Evaluation of Combined Quantification of PCA3 and AMACR Gene Expression for Molecular Diagnosis of Prostate Cancer in Moroccan Patients by RT-qPCR

  • Maane, Imane Abdellaoui;El Hadi, Hicham;Qmichou, Zineb;Al Bouzidi, Abderrahmane;Bakri, Youssef;Sefrioui, Hassan;Dakka, Nadia;Moumen, Abdeladim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권12호
    • /
    • pp.5229-5235
    • /
    • 2016
  • Prostate cancer (PCa) remains one of the most widespread and perplexing of all human malignancies. Assessment of gene expression is thought to have an important impact on cancer diagnosis, prognosis and therapeutic decisions. In this context, we explored combined expression of PCa related target genes AMACR and PCA3 in 126 formalin fixed paraffin embedded prostate tissues (FFPE) from Moroccan patients, using quantitative real time reverse transcription-PCR (RT-qPCR). This quantification required data normalization accomplished using stably expressed reference genes (RGs). A panel of twelve RG was assessed, data being analyzed using GenEx V6 based on geNorm, NormFinder and statistical methods. Accordingly, the hnRNP A1 gene was identified and selected as the most stably expressed RG for reliable and accurate gene expression quantification in prostate tissues. The ratios of both PCA3 and AMACR gene expression relative to that of the hnRNP A1 gene were calculated and the performance of each target gene for PCa diagnosis was evaluated using receiver-operating characteristics. PCA3 and AMACR mRNA quantification based on RT-qPCR may prove useful in PCa diagnosis. Of particular interesting, combining PCA3 and AMACR quantification improved PCa prediction by increasing sensitivity with retention of good specificity.

DNA Chip using Single Stranded Large Circular DNA: Low Background and Stronger Signal Intensity

  • Park, Jong-Gu
    • 대한의생명과학회지
    • /
    • 제10권2호
    • /
    • pp.75-84
    • /
    • 2004
  • Massive identification of differentially expressed patterns has been used as a tool to detect genes that are involved in disease related process. We employed circular single stranded sense molecules as probe DNA for a DNA chip. The circular single stranded DNAs derived from 1,152 unigene cDNA clones were purified in a high throughput mode from the culture supernatant of bacterial transformants containing recombinant phagemids and arrayed onto silanized slide glasses. The DNA chip was examined for its utility in detection of differential expression profile by using cDNA hybridization. Hybridization of the single stranded probe DNA were performed with Cy3- or Cy5-labeled target cDNA preparations at $60^\circ$C. Dot scanning performed with the hybridized slide showed 29 up-regulated and 6 down-regulated genes in a cancerous liver tissue when compared to those of adjacent noncancerous liver tissue. These results indicate that the circular single stranded sense molecules can be employed as probe DNA of arrays in order to obtain a precious panel of differentially expressed genes.

  • PDF

Heme oxygenase-1 유도를 통한 화학 암예방 및 세포보호와 그 분자생물학적 기전 (Chemoprevention and Chemoprotection Through Heme Oxygenase-1 Induction and Underlying Molecular Mechanisms)

  • 김은희;김성환;나혜경;서영준
    • 한국환경성돌연변이발암원학회지
    • /
    • 제26권4호
    • /
    • pp.97-112
    • /
    • 2006
  • Heme oxygenase(HO)-1 is an important antioxidant enzyme that plays a pivotal role in cellular adaptation and protection in response to a wide array of noxious stimuli. Thus, HO-1 induction has been associated with prevention or mitigation of pathogenesis of various diseases, including acute inflammation, atherosclerosis, degenerative diseases, and carcinogenesis. Recent progress in our understanding of the function of molecules in the cellular signaling network as key modulators of gene transcription sheds light on the molecular mechanisms underlyuing HO-1 gene expression. A panel of redox-sensitive transcription factors such as activator protein-1, nuclear factor-kB, and nuclear factor E2-related factor-2, and some of the upstream kinases have been identified as prime regulators of HO-1 gene induction. This review summarizes molecular mechanisms underlying HO-1 expression and the significance of targeted induction of HO-1 as a potential chemopreventive or chemoprotective strategy.

  • PDF

A Korean Case of Neonatal Nemaline Myopathy Carrying KLHL40 Mutations Diagnosed Using Next Generation Sequencing

  • Suh, Yoong-a;Sohn, Young Bae;Park, Moon Sung;Lee, Jang Hoon
    • Neonatal Medicine
    • /
    • 제28권2호
    • /
    • pp.89-93
    • /
    • 2021
  • Nemaline myopathy is a genetically heterogeneous neuromuscular disorder and one of the most common congenital myopathies. The clinical manifestations usually vary depending on the age of onset. Neonatal nemaline myopathy has the worst prognosis, primarily due to respiratory failure. Several genes associated with nemaline myopathy have been identified, including NEB, ACTA1, TPM3, TPM2, TNNT1, CFL2, KBTBD13, KLHL40, KLHL41, LMOD3, and KBTBD13. Here, we report a neonatal Korean female patient with nemaline myopathy carrying compound heterozygous mutations in the gene KLHL40 as revealed using next generation sequencing (NGS). The patient presented with postnatal cyanosis, respiratory failure, dysphagia, and hypotonia just after birth. To identify the genetic cause underlying the neonatal myopathy, NGS-based gene panel sequencing was performed. Compound heterozygous pathogenic variants were detected in KLHL40: c.[1405G>T];[1582G>A] (p. [Gly469cys];[Glu528Lys]). NGS allows quick and accurate diagnosis at a lower cost compared to traditional serial single gene sequencing, which is greatly advantageous in genetically heterogeneous disorders such as myopathies. Rapid diagnosis will facilitate efficient and timely genetic counseling, prediction of disease prognosis, and establishment of treatments.