• 제목/요약/키워드: Gene localization

검색결과 258건 처리시간 0.03초

Immunofluorescence localization of Saccharomyces cerevisiae CDC3 gene product

  • Kim, Hyong-Bai
    • 미생물과산업
    • /
    • 제17권1호
    • /
    • pp.2-9
    • /
    • 1991
  • All of four genes are cloned and DNA sequence analysis have now revealed that these four genes encode a family of proteins with similar amino acid sequence. These proteins show no extensive similarities to any known proteins (Haarer et al., 1991). Among them, CDC3 gene is fused with E. coli lacZ and trpE genes and antibodies against the CDC3 gene product are produced. These antibodies are used to check the localization of this product to the vicinity of the 10 -nm filaments in the mother-bud neck.

  • PDF

Subcellular Localization of Catalase Encoded by the ctl+ Gene in Schizosaccharomyces pombe

  • Lee, Sang-il;Lee, Joon;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • 제38권3호
    • /
    • pp.156-159
    • /
    • 2000
  • The cttl+ gene in Schizosaccharomyces pombe encoeds a catalse responsible for H2O2-resistance of this organism as judged by the H2O2-sensitive phenotype of the ctt1Δ mutant. In this study, we investigated the subcellular localization of the Ctt1 gene product. In wild type cells catalase activity was detected in the organelle fraction as well as in the cytosol. The ctt1Δ mutant contained no catalase activity, indicating that both cytosolic and organellar catalases are the products of a single ctt1+ gene. Western bolt analysis revealed two catalase bands, both of which disappeared in the ctt1Δ mutant. The major, fastermigrating band existed in the cytosol whereas the monor, slower-migrating band appeared to be located in organelles, most likely in peroxisomes. These results suggest that the ctt1+ gene product targeted to the peroxisome is a modified form of the one in the cytosol.

  • PDF

Cloning and Characterization of hydroxypyruvate isomerase (EC 5.3.1.22) gene in silkworm Bombyx mori

  • Lv, HongGang;Chen, KePing;Yao, Qin;Wang, Lin
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제17권2호
    • /
    • pp.189-195
    • /
    • 2008
  • The sequence of hydroxypyruvate isomerase gene was obtained in NCBI. In this study, the hydroxypyruvate isomerase gene of Bombyx.mori was identified and annotated with bioinformatics tools. The result was confirmed by RT-PCR, prokaryotic expression, mass spectrographic analysis and sub-cellular localization. The hydroxypyruvate isomerase cDNA comtains a 783bp ORF, and has 4 exons. The deduced protein has 260 amino acid residues with the predicted molecular weight of 29169.30 Da, isoelectric point of 6.10, and contains conserved PRK09997 and Hfi domains. The hydroxypyruvate isomerases of Nasonia vitripennis and Bombyx mori have a high homology. Through RTPCR analysis, we found that this transcript was present in testis, ovary, blood-lymph, fat body, midgut, silk gland and tuba Malpighii. This protein was located in cytoplasm through immunohistochemistry. We submitted the cloned gene under the accession number EU344910. The enzyme has been classified under accession number EC 5.3.1.22.

Adaptive Transition of Aquaporin 5 Expression and Localization during Preimplantation Embryo Development by In Vitro Culture

  • Park, Jae-Won;Shin, Yun Kyung;Choen, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권3호
    • /
    • pp.153-160
    • /
    • 2014
  • Adaptive development of early stage embryo is well established and recently it is explored that the mammalian embryos also have adaptive ability to the stressful environment. However, the mechanisms are largely unknown. In this study, to evaluate the possible role of aquaporin in early embryo developmental adaptation, the expression of aquaporin (AQP) 5 gene which is detected during early development were examined by the environmental condition. To compare expression patterns between in vivo and in vitro, we conducted quantitative RT-PCR and analyzed localization of the AQP5 by whole mount immunofluorescence. At in vivo condition, Aqp5 expressed in oocyte and in all the stages of preimplantation embryo. It showed peak at 2-cell stage and decreased continuously until morula stage. At in vitro condition, Aqp5 expression pattern was similar with in vivo embryos. It expressed both at embryonic genome activation phase and second mid-preimplantation gene activation phase, but the fold changes were modified between in vivo embryos and in vitro embryos. During in vivo development, AQP5 was mainly localized in apical membrane of blastomeres of 4-cell and 8-cell stage embryos, and then it was localized in cytoplasm. However, the main localization area of AQP5 was dramatically shifted after 8-cell stage from cytoplasm to nucleus by in vitro development. Those results explore the modification of Aqp5 expression levels and location of its final products by in vitro culture. It suggests that expression of Aqp5 and the roles of AQP5 in homeostasis can be modulated by in vitro culture, and that early stage embryos can develop successfully by themselves adapting to their condition through modulation of the specific gene expression and localization.

재조합 Saccharomyces cerevisiae에서 Inulinase의 발현과 국재성 (Expression and Localization of Inulinase in Recombinant Saccharomyces cerevisiae)

  • 남수완;우문희;김병문;정봉현;박영훈
    • 한국미생물·생명공학회지
    • /
    • 제22권2호
    • /
    • pp.152-157
    • /
    • 1994
  • Inulinase of Kluyveromyces marxianus origin was produced by recombinant yeast Saccharomyces cerevisiae under the control of GAL1 promoter, to examine the expression and localization of inulinase in a repressed(galactose-free) or derepressed(galactose-containinga) medium. The inulinase gene(INU1A) was constitutively expressed at 6.7 units/ml in a repressed medium. When the cell started to utilize galactose in a derepressed medium, the INU1A gene began to be expressed, and the final expression level reached about 45 units/ml. According to be the nondenaturingPAGE analysis, inulinase produced by S. cerevisiae was found to be less glycosylated than the bakers yeast invertase. In addition, its glycosylation pattern was less heterogeneous than the K. marxianus inulinase. The supplementation of inulin or raffinose into the derepressed medium increased the cell growth rate, while the expression of INU1A was repressed. Regardless of the carbon sources examined, most of inulinase activity (more than 98%) was found in the extracellular medium, indicating excellent secretion efficiency.

  • PDF

Assessment of the Reliability of Protein-Protein Interactions Using Protein Localization and Gene Expression Data

  • Lee, Hyun-Ju;Deng, Minghua;Sun, Fengzhu;Chen, Ting
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.313-318
    • /
    • 2005
  • Estimating the reliability of protein-protein interaction data sets obtained by high-throughput technologies such as yeast two-hybrid assays and mass spectrometry is of great importance. We develop a maximum likelihood estimation method that uses both protein localization and gene expression data to estimate the reliability of protein interaction data sets. By integrating protein localization data and gene expression data, we can obtain more accurate estimates of the reliability of various interaction data sets. We apply the method to protein physical interaction data sets and protein complex data sets. The reliability of the yeast two-hybrid interactions by Ito et al. (2001) is 27%, and that by Uetz et at.(2000) is 68%. The reliability of the protein complex data sets using tandem affinity purification-mass spec-trometry (TAP) by Gavin et at. (2002) is 45%, and that using high-throughput mass spectrometric protein complex identification (HMS-PCI) by Ho et al. (2002) is 20%. The method is general and can be applied to analyze any protein interaction data sets.

  • PDF

Apoptin gene delivery by a PAMAM dendrimer modified with a nuclear localization signal peptide as a gene carrier for brain cancer therapy

  • Bae, Yoonhee;Lee, Jell;Kho, Changwon;Choi, Joon Sig;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.467-478
    • /
    • 2021
  • In this study, we aimed to synthesize PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR), using KRRR peptides as a nuclear localization signal and introduced histidine residues into the KRRR-grafted PAMAMG3 for delivering a therapeutic, carcinoma cell-selective apoptosis gene, apoptin into human primary glioma (GBL-14) cells and human dermal fibroblasts. We examined their cytotoxicity and gene expression using luciferase activity and enhanced green fluorescent protein PAMAMG3 derivatives in both cell lines. We treated cells with PAMAMG3 derivative/apoptin complexes and investigated their intracellular distribution using confocal microscopy. The PAMAMG3-KRRR and PAMAMG3-HKRRR dendrimers were found to escape from endolysosomes into the cytosol. The JC-1 assay, glutathione levels, and Annexin V staining results showed that apoptin triggered cell death in GBL-14 cells. Overall, these findings indicated that the PAMAMG3-HKRRR/apoptin complex is a potential candidate for an effective nonviral gene delivery system for brain tumor therapy in vitro.

Localization of F plasmid SopB protein and Gene silencing via protein-mediated subcellular localization of DNA

  • Kim Sook-Kyung;James C. Wang
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2000년도 추계학술발표대회
    • /
    • pp.15-23
    • /
    • 2000
  • The subcellular localization of the SopB protein, which is encoded by the Escherichia coli F plasmid and is involved in the partition of the single-copy plasmid, was directly visualized through the expression of the protein fused to the jellyfish green fluorescent protein (GFP). The fusion protein was found to localize to positions close but not at the poles of exponentially growing cells. Examination of derivatives of the fusion protein lacking various regions of SopB suggests that the signal for the cellular localization of SopB resides in a region close to its N terminus. Overexpression of SopB led to silencing of genes linked to, but well-separated from, a cluster of SopB-binding sites termed sopC. In this SopB-mediated repression of sopC-linked genes, all but the N-terminal 82 amino acids of SopB can be replaced by the DNA-binding domain of a sequence-specific DNA -binding protein, provided that the sopC locus is also replaced by the recognition sequence of the DNA-binding domain. These results suggest a mechanism of gene silencing: patches of closely packed DNA-binding protein is localized to specific cellular sites; such a patch can capture a DNA carrying the recognition site of the DNA -binding domain and sequestrate genes adjacent to the recognition site through nonspecific binding of DNA.

  • PDF

Evaluation and interpretation of transcriptome data underlying heterogeneous chronic obstructive pulmonary disease

  • Ham, Seokjin;Oh, Yeon-Mok;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • 제17권1호
    • /
    • pp.2.1-2.12
    • /
    • 2019
  • Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.