• Title/Summary/Keyword: Gene inactivation

Search Result 167, Processing Time 0.024 seconds

Overproduction of the Escherichia coli Chaperones GroEL-GroES in Rhodococcus ruber Improves the Activity and Stability of Cell Catalysts Harboring a Nitrile Hydratase

  • Tian, Yuxuan;Yu, Chen, Huimin;Shen, Zhongyao
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.337-346
    • /
    • 2016
  • Three combinations of molecular chaperones from Escherichia coli (i.e., DnaK-DnaJ-GrpE-GroEL-GroES, GroEL-GroES, and DnaK-DnaJ-GrpE) were overproduced in E. coli BL21, and their in vitro stabilizing effects on a nitrile hydratase (NHase) were assessed. The optimal gene combination, E. coli groEL-groES (ecgroEL-ES), was introduced into Rhodococcus ruber TH3. A novel engineered strain, R. ruber TH3G was constructed with the native NHase gene on its chromosome and the heterologous ecgroEL-ES genes in a shuttle plasmid. In R. ruber TH3G, NHase activity was enhanced 37.3% compared with the control, TH3. The in vivo stabilizing effect of ecGroEL-ES on the NHase was assessed using both acrylamide immersion and heat shock experiments. The inactivation behavior of the in vivo NHase after immersion in a solution of dynamically increased concentrations of acrylamide was particularly evident. When the acrylamide concentration was increased to 500 g/l (50%), the remaining NHase activity in TH3G was 38%, but in TH3, activity was reduced to 10%. Reactivation of the in vivo NHases after varying degrees of inactivation was further assessed. The activity of the reactivated NHase was more than 2-fold greater in TH3G than in TH3. The hydration synthesis of acrylamide catalyzed by the in vivo NHase was performed with continuous acrylonitrile feeding. The final concentration of acrylamide was 640 g/l when catalyzed by TH3G, compared with 490 g/l acrylamide by TH3. This study is the first to show that the chaperones ecGroEL-ES work well in Rhodococcus and simultaneously possess protein-folding assistance functions and the ability to stabilize and reactivate the native NHases.

Functional Abnormalities of HERG Mutations in Long QT Syndrome 2 (LQT2)

  • Hiraoka, Masayasu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.367-371
    • /
    • 2001
  • The chromosome 7-linked long QT syndrome (LQT2) is caused by mutations in the human ether-a- go-go-related gene (HERG) that encodes the rapidly activating delayed rectifier $K^+$ current, $I_{Kr},$ in cardiac myocytes. Different types of mutations have been identified in various locations of HERG channel. One of the mechanisms for the loss of normal channel function is due to membrane trafficking of channel protein. The decreased channel function in some deletion mutants appears to be due to loss of coupling with wild type HERG to form the functional channel as the tetramer. Most of missense mutants with few exceptions could interact with wild type HERG to form functional tetramer and caused dominant negative suppression with co-injection with wild type HERG showing variable effects on current amplitude, voltage dependence, and kinetics of activation and inactivation. Two missense mutants at pore regions of HERG found in Japanese LQT2 (A614V and V630L) showed accentuated inward rectification due to a negative shift in steady-state inactivation and fast inactivation. One mutation in S4 region (R534C) produced a negative shift in current activation, indicating the S4 serving as the voltage sensor and accelerated deactivation. The C-terminus mutation, S818L, could not express the current by mutant alone and did not show dominant negative suppression with co-injection of equal amount of wild type cRNA. Co-injection of excess amount of mutant with wild type produced dominant negative suppression with a shift in voltage dependent activation. Therefore, multiple mechanisms are involved in different mutations and functional abnormality in LQT2. Further characterization with the interactions between various mutants in HERG and the regulatory subunits of the channels (MiRP1 and minK) is to be clarified.

  • PDF

The Study of X Chromosome Inactivation Mechanism in Klinefelter's Syndrome by cDNA Microarray Experiment

  • Jeong, Yu-Mi;Chung, In-Hyuk;Park, Jung Hoon;Lee, Sook-Hwan;Chung, Tae-Gyu;Kim, Yong Sung;Kim, Nam-Soon;Yoo, Hyang-Sook;Lee, Suman
    • Genomics & Informatics
    • /
    • v.2 no.1
    • /
    • pp.30-35
    • /
    • 2004
  • To investigate the XIST gene expression and its effect in a Klinefelter's patient, we used Klinefelter's syndrome (XXY) patient with azoospermia and also used a normal male (XY) and a normal female (XX) as the control, We were performed cytogenetic analysis, Y chromosomal microdeletion assay (Yq), semi-quantitative RT-PCR, and the Northern blot for Klinefelter's syndrome (KS) patient, a female and a male control, We extracted total RNA from the KS patient, and from the normal cells of the female and male control subjects using the RNA prep kit (Qiagen), cDNA microarray contained 218 human X chromosome-specific genes was fabricated. Each total RNA was reverse transcribed to the first strand cDNA and was labeled with Cy-3 and Cy-5 fluorescein, The microarray was scanned by ScanArray 4000XL system. XIST transcripts were detected from the Klinefelters patient and the female by RT-PCR and Northern blot analysis, but not from the normal male, In the cDNA microarray experiment, we found 24 genes and 14 genes are highly expressed in KS more than the normal male and females, respectively. We concluded that highly expressed genes in KS may be a resulted of the abnormal X inactivation mechanism.

Marker-assisted Genotype Analysis of Bulb Colors in Segregating Populations of Onions (Allium cepa)

  • Kim, Sunggil;Bang, Haejeen;Yoo, Kil-Sun;Pike, Leonard M.
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.192-197
    • /
    • 2007
  • Bulb color in onions (Allium cepa) is an important trait whose complex inheritance mechanism involves epistatic interactions among major color-related loci. Recent studies revealed that inactivation of dihydroflavonol 4-reductase (DFR) in the anthocyanin synthesis pathway was responsible for the color differences between yellow and red onions, and two recessive alleles of the anthocyanidin synthase (ANS) gene were responsible for a pink bulb color. Based on mutations in the recessive alleles of these two genes, PCR-based markers for allelic selection were developed. In this study, genotype analysis of onions from segregating populations was carried out using these PCR-based markers. Segregating populations were derived from the cross between yellow and red onions. Five yellow and thirteen pink bulbs from one segregating breeding line were genotyped for the two genes. Four pink bulbs were heterozygous for the DFR gene, which explains the continuous segregation of yellow and pink colors in this line. Most pink onions were homozygous recessive for the ANS gene, except for two heterozygotes. This finding indicated that the homozygous recessive ANS gene was primarily responsible for the pink color in this line. The two pink onions, heterozygous for the ANS gene, were also heterozygous for the DFR gene, which indicated that the pink color was produced by incomplete dominance of a red color gene over that of yellow. One pink line and six other segregating breeding lines were also analyzed. The genotyping results matched perfectly with phenotypic color segregation.

Impact of methylation of the $p16^{INK4a}$ gene on the prognosis ofhead and neck squamous cell carcinoma patients

  • Lee, Eui-Hoon;Hwang, Dae-Seok;Shin, Sang-Hun;Kim, Uk-Kyu;Chung, In-Kyo;Kim, Yong-Deok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.2
    • /
    • pp.101-109
    • /
    • 2012
  • Objectives: The inactivation of the tumor suppressor gene $p16^{INK4a}$ plays an important role in the development of malignant tumors, including oral squamous cell carcinoma. The p16 gene is involved in the p16/cyclin-dependent kinase/retinoblastoma (Rb) gene pathway of cell cycle control. The p16 protein is considered a negative regulator of this pathway. The p16 gene encodes an inhibitor of cyclin-dependent kinases 4 and 6 which regulate the phosphorylation of the retinoblastoma gene and G1 to S phase transition in the cell cycle. However, the p16 gene can lose its functionality through point mutations, loss of heterozygosity or methylation of its promoter region. Materials and Methods: In this study, the authors analyzed the correlation between various clinicopathological findings- patient age, gender and smoking, disease recurrence, tumor size, stage, and differentiation- and p16 protein expression or p16 promoter hypermethylation in 59 cases of head and neck squamous cell carcinoma. Results: The results revealed p16 protein expression and p16 promoter hypermethylation in 28 cases (47.5%) and 21 cases (35.6%), respectively, of head and neck squamous cell carcinoma. However, neither p16 protein expression nor p16 promoter hypermethylation had any statistical influence on clinicopathological findings or survival rate. Conclusion: This data, and a review of the literature, suggest that p16 promoter hypermethylation cannot yet be used as an independent prognostic factor influencing carcinogenesis, but must be considered as an important factor along with other genetic alterations affecting the pRb pathway.

Characterization of RbmD (Glycosyltransferase in Ribostamycin Gene Cluster) through Neomycin Production Reconstituted from the Engineered Streptomyces fradiae BS1

  • Nepal, Keshav Kumar;Oh, Tae-Jin;Subba, Bimala;Yoo, Jin Cheol;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.83-88
    • /
    • 2009
  • Amino acid homology analysis predicted that rbmD, a putative glycosyltransferase from Streptomyces ribosidificus ATCC 21294, has the highest homology with neoD in neomycin biosynthesis. S. fradiae BS1, in which the production of neomycin was abolished, was generated by disruption of the neoD gene in the neomycin producer S. fradiae. The restoration of neomycin by self complementation suggested that there was no polar effect in the mutant. In addition, S. fradiae BS6 was created with complementation by rbmD in S. fradiae BS1, and secondary metabolite analysis by ESI/MS, LC/MS and MS/MS showed the restoration of neomycin production in S. fradiae BS6. These gene inactivation and complementation studies suggested that, like neoD, rbmD functions as a 2-N-acetlyglucosaminyltransferase and demonstrated the potential for the generation of novel aminoglycoside antibiotics using glycosyltransferases in vivo.

Effect of Transgenic Genotype on Transgene Expression in Mud Loach (Misgurnus mizoIepis): I. Copy Number-Dependent Expression in Gynogenetically Derived Homozygous Transgenics

  • Nam Yoon Kwon;Noh Jae Koo;Kim Dong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.1
    • /
    • pp.39-46
    • /
    • 2001
  • To examine the effect of copy number-dependent transgenic genotype on the expression of foreign gene, stable hemizygous and homozygous transgenic breeding line was established using artificial parthenogenesis. For this purpose, induced diploid gynogenetic transgenesis was optimized in mud loach (Misgurnus mizolepis) using UV-irradiated cyprinid loach (M. anguillicaudatus) sperm and thermal shocks. Optimum UV range for inactivation of cyprinid loach sperm was between 3,150 to $4,050\;ergs/mm^2$ The UV-irradiated sperm were inseminated into eggs from recessive color strain (yellow) or heterozygous transgenic mud loach containing CAT gene. Cold shock at $2^{\circ}C$ for 60 min, 5 min post fertilization successfully restored the diploidy of eggs inseminated with UV-irradiated sperm. Restoration to diploidy was confirmed by flow cytometry and gynogenetic status was verified by examining maternal exclusive inheritance of multi-locus DNA fingerprints, body color and transgenic marker. Putative isogenic transgenic fish clearly showed homozygous status at trans gene locus based on Southern blot hybridization and progeny testing. Further, such homozygous gynogenetic diploids revealed the increased levels of transgene expression, when compared to those of heterozygous (hemizygous) transgenic fish.

  • PDF

Methylation Status and Expression of BRCA2 in Epithelial Ovarian Cancers in Indonesia

  • Pradjatmo, Heru
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8599-8604
    • /
    • 2016
  • Ovarian cancer is the main cause of mortality in gynecological malignancy and extensive studies have been conducted to study the underlying molecular mechanisms. The BRCA2 gene is known to be an important tumor suppressor in ovarian cancer, thereby BRCA2 alterations may lead to cancer progression. However, the BRCA2 gene is rarely mutated, and loss of function is suspected to be mediated by epigenetic regulation. In this study we investigated the methylation status and gene expression of BRCA2 in ovarian cancer patients. Ovarian cancer pateints (n=69) were recruited and monitored for 54 months in this prospective cohort study. Clinical specimens were used to study the in situ expression of aberrant BRCA2 proteins and the methylation status of BRCA2. These parameters were then compared with clinical parameters and overall survival rate. We found that BRCA2 methylation was found in the majority of cases (98.7%). However, the methylation status was not associated with protein level expression of BRCA2 (49.3%). Therefore in addition to DNA methylation, other epigenetic mechanisms may regulate BRCA2 expresison. Our findings may become evidence of BRCA2 inactivation mechanism through DNA methylation in the Indonesian population. More importantly, from multivariate analysis, BRCA2 expression was correlated with better overall survival (HR 0.32; p=0.05). High percentage of BRCA2 methylation and correlation of BRCA2 expression with overall survival in epithelial ovarian cancer cases may lead to development of treatment modalities specifically to target methylation of BRCA genes.

Clinicopathological Significance of BRCA1 Promoter Hypermethylation in Thai Breast Cancer Patients

  • Saelee, Pensri;Chaiwerawattana, Arkom;Ogawa, Kumiko;Cho, Young-Man;Tiwawech, Danai;Suktangman, Vimol
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10585-10589
    • /
    • 2015
  • Breast cancer susceptibility gene 1 (BRCA1), mapped on chromosome 17q21, is implicated in the mechanisms of cellular DNA repair. Inactivation of this gene is involved in the development of many human cancers, including breast cancer. This study aimed to investigate the prognostic value of BRCA1 promoter hypermethylation and expression in breast cancer cases. Sixty-one breast cancers were examined for BRCA1 hypermethylation by methylation-specific polymerase chain reaction (PCR), and 45 paired normal breast tissues were analyzed for altered BRCA1 mRNA levels by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Aberrant methylation status in BRCA1 was detected in 15 of 61 cases (24.6%), while reduced expression was found in 7 of 45 (15.6%). BRCA1 hypermethylation was statistically associated with tumor grade III (p=0.04), a high frequency of stage IIB (p=0.02), and triple-negative phenotype (OR= 3.64, 95%CI =1.1-12.3, p=0.03). Our findings indicated that BRCA1 promoter hypermethylation is a useful prognostic marker for breast cancer.

Second locus for late-onset familial Amyotrophic Lateral Sclerosis (가족성 근위축성측삭경화증을 유발시키는 두 번째 유전자 위치)

  • 홍성출
    • Journal of Life Science
    • /
    • v.11 no.3
    • /
    • pp.279-283
    • /
    • 2001
  • Amyotrophic lateral sclerosis(ALS) is a progressive neurologic disorder resulting from the degeneration of upper and lower motor neurons, and is inherited in 10% of cases. About 20% of familial ALS, clinically indistinguishable from sporadic ALS, is caused by mutations of Cu/Zn superoxide dismutase on chromosome 21q22.21 inherited as an autosomal dominant trait. We now report a new locus in the non-SOD1 dominantly inherited ALS. We screened a large ALS family with 11 affected individuals and one obligate gene carrier with genome-wide ABI polymorphic markers using the ABI 377 automated system. No evidence of linkage was obtained with the autosomal markers. We next screened this family with X chromosome markers as there was no evidence of male-to-male tran-smission of the disease. Linkage was established with several X chromosome markers with a lod score up to 3.8; almost the maximum possible score in this family. Our finding imply that a gene for the dominant expression of a neuronal degeneration is coded on X chromosome and raise the question of the role of X-linked genes that escape inactivation in this pathogenesis. More importantly, our finding that a gene causing ALS is localized on X-chromosome has direct investigational relevance to sporadic ALS, where epidemiological studies show male gender predominance(1.3:1) and earlier onset in men by 5-10 years.

  • PDF