• Title/Summary/Keyword: Gene fusion

Search Result 605, Processing Time 0.033 seconds

Constructions of a Transfer Vector Containing the gX Signal Sequence of Pseudorabies Virus and a Recombinant Baculovirus

  • Lee, Hyung-Hoan;Kang, Hyun;Kim, Jung-Woo;Hong, Seung-Kuk;Kang, Bong-Joo;Song, Jae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.541-547
    • /
    • 1999
  • Constructions of a transfer vector and a recombinant baculovirus using the thymidine kinase gene of the Herpes simplex virus type 1 strain F (HSV -1) were carried out. Newly cloned transfer vector, pHcgXIIIB, was constructed by insertion of the glycoprotein gX gene signal peptide sequence of Pseudorabies virus into the baculovirus vector pHcEV-IV. The gX sequence was inserted just downstream from the promoter for the polyhedrin gene of the Hyphantria cunea nuclear polyhedrosis virus (HcNPV). HSV-1 thymidine kinase(tk) gene (1.131 kb) was used as a candidate gene for transferring into the baculovirus expression system. The tk gene was inserted into a BamHI site downstream from the gX sequence-promoter for the polyhedrin gene in the pHcgXIIIB transfer vector and was transferred into the infectious lacZ-HcNPV expression vector. Recombinant virus was isolated and was named gX-TK-HcNPV. The recombinant virus produced a 45 kDa gX-TK fusion protein in Spodoptera frugiperda cells, which was confirmed by Western blot analysis. Microscopic examination of gX-TK-HcNPV-infected cells revealed normal multiplication. Fluorescent antibody staining indicated that the gX-TK fusion protein was present in the cytoplasm. These results indicated that the transfer vector successfully transferred the gX-tk gene into the baculovirus expression system.

  • PDF

Development of Ultra-rapid Nested PCR Method for Detection of Specific Gene of Tracheal Mite (Acarapis woodi) (기문응애(Acarapis woodi) 특이 유전자 검출을 위한 초고속 nested PCR법 개발)

  • Kim, MoonJung;Kim, Byoung-Hee;Kim, SoMin;Truong, A Tai;Kim, Jung-Min;Kim, Seonmi;Yoon, Byoung-Su
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.15-26
    • /
    • 2019
  • Tracheal mite (Acarapis woodi) is an internal parasite that is parasitic on the bronchus of adult bees and sucks fluid from the trachea. Since its first report by Rennie, it has been spread throughout Europe and in some Asian regions, with adjacent Japan and China reported in 2011 and 2012, respectively. Korea detected specific genes of A. woodi in 2015, but only one of 99 samples has been identified and the being of A. woodi has not been confirmed. In this study, we established a specific nested PCR method to confirm for detecting low-copy number of A. woodi-specific gene in bee samples. As a result, A. woodi-specific COI gene was amplified in 15 of 23 samples, and they were judged positive by melting point analysis and sequencing analysis. Although we could not observe the existence of the mites in bees, our results suggest that tracheal mit might exist in nature.

Rapid detection of deformed wing virus in honeybee using ultra-rapid qPCR and a DNA-chip

  • Kim, Jung-Min;Lim, Su-Jin;Kim, SoMin;Kim, MoonJung;Kim, ByoungHee;Tai, Truong A;Kim, Seonmi;Yoon, ByoungSu
    • Journal of Veterinary Science
    • /
    • v.21 no.1
    • /
    • pp.4.1-4.9
    • /
    • 2020
  • Fast and accurate detection of viral RNA pathogens is important in apiculture. A polymerase chain reaction (PCR)-based detection method has been developed, which is simple, specific, and sensitive. In this study, we rapidly (in 1 min) synthesized cDNA from the RNA of deformed wing virus (DWV)-infected bees (Apis mellifera), and then, within 10 min, amplified the target cDNA by ultra-rapid qPCR. The PCR products were hybridized to a DNA-chip for confirmation of target gene specificity. The results of this study suggest that our method might be a useful tool for detecting DWV, as well as for the diagnosis of RNA virus-mediated diseases on-site.

Characterization and Regulation of the Gene Encoding Monothiol Glutaredoxin 3 in the Fission Yeast Schizosaccharomyces pombe

  • Moon, Jeong-Su;Lim, Hye-Won;Park, Eun-Hee;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.74-82
    • /
    • 2005
  • Glutaredoxins (Grxs) are thioloxidoreductases which are required for maintaining thiol/disulfide equilibrium in living cells. The Grx3 gene, which encodes one of the three monothiol Grxs in the fission yeast Schizosaccharomyces pombe, was characterized, and its transcriptional regulation studied. Genomic DNA encoding Grx3 was isolated by PCR, and a plasmid pTT3 carrying this DNA was produced. The DNA sequence has 1,267 bp, which would encode a monothiol Grx of 166 amino acids with a molecular mass of 18.3 kDa. The putative protein has 27% homology with Grx5, and contains many hydrophobic amino acid residues in its N-terminal region. S. pombe cells harboring pTT3 had increased Grx activity and enhanced survival on minimal medium plates containing aluminum (5 mM), BSO (0.05 mM), menadione (0.01 mM) or cadmium (0.2 mM). The 568 bp upstream region of Grx3 was fused into the promoterless b-galactosidase gene of the shuttle vector YEp367R to generate fusion plasmid pMJS10. Potassium chloride (KCl) and metals including aluminum and cadmium enhanced the synthesis of ${\beta}$-galactosidase from the fusion gene. The synthesis of ${\beta}$-galactosidase was also enhanced, in a Pap1-dependent manner, by fermentable carbon sources such as glucose (at low concentrations) and sucrose, but not by non-fermentable carbon sources such as ethanol and acetate. Grx3 mRNA increased in response to treatment with BSO. These observations indicate that S. pombe Grx3 is involved in the response to stress, and is regulated by stress.

Intracellular Localization and Sustained Prodrug Cell Killing Activity of TAT-HSVTK Fusion Protein in Hepatocelullar Carcinoma Cells

  • Cao, Limin;Si, Jin;Wang, Weiyu;Zhao, Xiaorong;Yuan, Xiaomei;Zhu, Huifen;Wu, Xiaolong;Zhu, Jianzhong;Shen, Guanxin
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.104-111
    • /
    • 2006
  • Gene therapy with nonviral vectors using the suicide gene/prodrug activating system of herpes simplex virus type-1 thymidine kinase (HSV1-TK)/ganciclovir (GCV) is inefficient in killing malignant tumor cells due to two major factors: (a) an unsatisfactory bystander effect; (b) short-lived expression of the protein. To study the capacity of the protein transduction domain (PTD) of HIV-1 TAT protein to enhance HSV1-TK/GCV cancer gene therapy, we constructed three fusion proteins TAT-TK, TK-TAT and TK. TAT-TK retained as much enzyme activity as TK, whereas that of TK-TAT was much lower. TAT-TK can enter HepG2 cells and much of it is translocated to the nucleus. The transduced HepG2 cells are killed by exogenously added GCV and have bystander effects on untransduced HepG2 cells. Most importantly, the introduced recombinant protein is stable and remains functional for several days at least, probably because nuclear localization protects it from the cytoplasmic degradation machinery and provides access to the nuclear transcription machinery. Our results indicate that TAT fusion proteins traffic intercellularly and have enhanced stability and prodrug cell killing activity. We conclude that TAT has potential for enhancing enzyme prodrug treatment of liver cancers.

Funcyional Studies on Gene 2.5 Protein of Bacteriophage T7 : Protein Interactions of Replicative Proteins (박테리오파아지 T7 의 기능에 관한 연구;복제단백질간의 단백질 상호작용)

  • 김학준;김영태
    • Journal of Life Science
    • /
    • v.6 no.3
    • /
    • pp.185-192
    • /
    • 1996
  • Bacteriophage T7 gene 2.5 protein, a single-stranded DNA binding protein, is required for T7 DNA replication, recombination, and repair. T7 gene 2.5 protein has two distinctive domains, DNA binding and C-terminal domain, directly involved in protein-protein interaction. Gene 2.5 protein participates in the DNA replication of Bacteriophage T7, which makes this protein essential for the T7 growth and DNA replication. What gene 2.5 protein makes important at T7 growth and DNA replication is its binding affinity to single-stranded DNA and the protein-protein important at T7 DNA replication proteins which are essential for the T7 DNA synthesis. We have constructed pGST2.5(WT) encoding the wild-type gene 2.5 protein and pGST2.5$\Delta $21C lacking C-terminal 21 amino acid residues. The purified GST-fusion proteins, GST2.5(WT) and GST2.5(WT)$\Delta$21C, were used for whether the carboxyl-terminal domain participates in the protein-protein interactions or not. GST2.5(WT) and GST2.5$\Delta$21C showed the difference in the protein-protein interaction. GST2.5(WT) interacted with T7 DNA polymerase and gene 4 protein, but GST2.5$\Delta$21C did not interact with either protein. Secondly, GST2.5(WT) interacts with gene 4 proteins (helicase/primase) but not GST2.5$\Delta$21C. these results proved the involvement of the carboxyl-terminal domain of gene 2.5 protein in the protein-protein interaction. We clearly conclude that carboxy-terminal domain of gene 2.5 protein is firmly involved in protein-protein interactions in T7 replication proteins.

  • PDF

Exprission of cellulomonas biazotea cellobiase gene in E. coli (Cellulomonas biazotea cellobiase gene의 대장균에의 형질발현)

  • 박영길;연창석;최영길
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.6-12
    • /
    • 1988
  • Cellobiase ($\beta$-glucosidase) is an enzyme of the cellulase system in cellulolytic microor-ganisms. The chromosomal DNA fragment which include cellobiase gene of Cellulomonas biazotea was cloned in Eschericia coli via plasmid pBR 322 vector. Restriction enzyme Sal I was used to obtain adequate size of fragments from C. biazotea. chromosomal DNA. The transformant of E. coli HB101 with recombinant plasmid pBG101 showed cellobiase activity, which is not ordinary in E. coli HB101. The enzyme activity of the transformant was as of 20% lower than that of C. biazotea.

  • PDF

Heat Inducible Expression of the CDC70 Gene Under the Control of Heat Shock Element in Saccharomyces Cerevisiae

  • Lee, Seok-Jae;Jahng, Kwang-Yeop;Lee, Young-Hoon;Chae, Keon-Sang
    • Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.196-200
    • /
    • 1995
  • In order to express the CDC70 gene of Saccharomyces cerevisiae by heat shock, we have designed heat inducibe hybrid promoters using the Drosophila melanogaster heat shock elements (HSEs). A 220 bp-long upstream fragment of the D. melanogaster hsp70 gene comprised of four HSEs was placed upstream of the putative proximal TATA box of the CDC70 gene. Hybrid promoters containing different fusion joints were tested for their ability to drive the CDC70 gene expression by heat shock. The results showed that the HSEs of D. melanogaster conferred the heat-induced CDC70 gene expression, but the heat inducibility was much lower than that in D. melanogaster.

  • PDF

Regulation of the Gene Encoding Glutathione Synthetase from the Fission Yeast

  • Kim, Su-Jung;Shin, Youn-Hee;Kim, Kyung-Hoon;Park, Eun-Hee;Sa, Jae-Hoon;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.326-331
    • /
    • 2003
  • The fission yeast cells that contained the cloned glutathione synthetase (GS) gene showed 1.4-fold higher glutathione (GSB) content and 1.9-fold higher GS activity than the cells without the cloned GS gene. Interestingly, $\gamma$-glutamylcysteine synthetase activity increased 2.1-fold in the S. pombe cells that contained the cloned GS gene. The S. pombe cells that harbored the multi copy-number plasmid pRGS49 (containing the cloned GS gene) showed a higher level of survival on solid media with cadmium chloride (1 mM) or mercuric chloride ($10\;{\mu}M$) than the cells that harbored the YEp357R vector. The 506 bp upstream sequence from the translational initiation point and N-terminal8 amino acid-coding region were fused into the promoteriess $\beta$-galactosidase gene of the shuttle vector YEp367R to generate the fusion plasmid pUGS39. Synthesis of $\beta$-galactosidase from the fusion plasmid pUGS39 was significantly enhanced by cadmium chloride and NO-generating S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SN). It was also induced by L-buthionine-(S,R)-sulfoximine, a specific inhibitor of $\gamma$-glutamylcysteine synthetase (GCS). We also found that the expression of the S. pombe GS gene is regulated by the Atf1-Spc1-Wis1 signal pathway.

Isolation of Mouse Ig Heavy and Light Chain Genomic DNA Clones, and Construction of Gene Knockout Vector for the Generation of Humanized Xenomouse (인간 단클론 항체 생산용 Humanized Xenomouse 제작의 기초 소재인 생쥐 Ig 중사슬 및 경사슬 Genomic DNA 클론의 확보 및 유전자 적중 벡터의 제작)

  • Lee, Hee-kyung;Cha, Sang-hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.233-241
    • /
    • 2002
  • Background: Monoclonal antibodies (mAb) of rodent origin are produced with ease by hybridoma fusion technique, and have been successfully used as therapeutic reagents for humans after humanization by genetic engineering. However, utilization of these antibodies for therapeutic purpose has been limited by the fact that they act as immunogens in human body causing undesired side effects. So far, there have been several attempts to produce human mAbs for effective in vivo diagnostic or therapeutic reagents including the use of humanized xenomouse that is generated by mating knockout mice which lost Ig heavy and light chain genes by homologous recombination and transgenic mice having both human Ig heavy and light gene loci in their genome. Methods: Genomic DNA fragments of mouse Ig heavy and light chain were obtained from a mouse brain ${\lambda}$ genomic library by PCR screening and cloned into a targeting vector with ultimate goal of generating Ig knockout mouse. Results: Through PCR screening of the genomic library, three heavy chain and three light chain Ig gene fragments were identified, and restriction map of one of the heavy chain gene fragments was determined. Then heavy chain Ig gene fragments were subcloned into a targeting vector. The resulting construct was introduced into embryonic stem cells. Antibiotic selection of transfected cells is under the progress. Conclusion: Generation of xenomouse is particularly important in medical biotechnology. However, this goal is not easily achieved due to the technical difficulties as well as huge financial expenses. Although we are in the early stage of a long-term project, our results, at least, partially contribute the successful generation of humanized xenomouse in Korea.