• Title/Summary/Keyword: Gene expressions

Search Result 726, Processing Time 0.037 seconds

Effects of Sesami Semen on Anti-Allergic Inflammation Mechanism related with Atopic Dermatitis (흑지마(黑芝麻)가 알러지성 염증 반응에 미치는 영향)

  • Ko, Hong-Yun;Koo, Young-Sun;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.15 no.2
    • /
    • pp.105-119
    • /
    • 2006
  • This study aimed to investigate the effects of Sesami Semen on the itching and anti-allergic inflammation mechanism related with cytokine, chemokine, histamine, $\beta$-hexosaminidase, NF-$\kappa$B, and free radical, and it was concluded as follows : 1. Sesami Semen did not show any cytotoxicity at the range of con-centration (1-250 ${\mu}g/m\ell$) on the human fibroblast cell (hFCs). 2. Sesami Semen reduced the gene expressions of IL-8, TNF-$\alpha$, IL-6 mRNA comparing with control. 3. Sesami Semen reduced the levels of IL-6, IL-8, MCP-1 within THP-1 cell depending on the concentration, and especially significantly reduced the the levels of IL-6, MCP-1 at all the concentration. 4. Sesami Semen significantly decreased the histamine secretion on HMC-1 at all the concentration. 5. Sesami Semen decreased the $\beta$-Hexosaminidase secretion 6.2% at 10 ${\mu}g$/ml conc., 58.3% at 100 ${\mu}g$/ml conc. and 63.2% at 200 ${\mu}g$/ml conc., respectively. And IC50 (${\mu}g$/ml) was 158.25 ${\mu}g$/ml. 6. Sesami Semen significantly suppressed the activity of NF-$\kappa$B promoter depending on the concentration. 7. Sesami Semen decreased the production of reactive oxygen species (ROS) and DPPH generation depending on the concentration. As judged with above results, the effects of Sesami Semen on the anti-allergic inflamation would be recognized, and it could be applied on the medicinal sources for prevention or treatment of several allergy disease. And more studies are needed furthermore with the seperation of effective materials.

  • PDF

Anti-diabetic Effect and Mechanism of Korean Red Ginseng in C57BL/KsJ db/db Mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.187-193
    • /
    • 2008
  • The present study was designed to investigate the anti-diabetic effect and mechanism of Korean red ginseng in C57BL/KsJ db/db mice. The db/db mice were divided into three groups: diabetic control group (DC), Korean red ginseng group (KRG, 100 mg/kg) and metformin group (MET, 300 mg/kg), and treated with drugs once per day for 10 weeks. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in KRG-, 67.7% in MET-treated group. With decreased plasma glucose and insulin levels, the insulin resistance index of the KRG-treated group was reduced by 27.6% compared to the DC group. The HbA1c levels in KRG and MET-treated groups were also decreased by 11.0% and 18.9% compared to that of DC group, respectively. Plasma triglyceride and non-esterified fatty acid levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the KRG-treated group compared to those in DC group. Histological analyses of the liver and fat tissue of mice treated with KRG revealed significantly decreased number of lipid droplets and decreased size of adipocytes compared to the DC group. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin contents, but decreased glucagon production. To elucidate action mechanism of KRG, effects on AMP-activated protein kinase (AMPK) and its downstream target proteins responsible for fatty acid oxidation and gluconeogenesis were explored in the liver. KRG activated AMPK and acetyl-coA carboxylase (ACC) phosphorylations, resulting in stimulation of fatty acid oxidation. KRG also caused to down regulation of SREBP1a and its target gene expressions such as FAS, SCD1 and GPAT. In summary, our results suggest that KRG exerted the anti-diabetic effect through AMPK activation in the liver of db/db mice.

Panax ginseng Meyer prevents radiation-induced liver injury via modulation of oxidative stress and apoptosis

  • Kim, Hyeong-Geug;Jang, Seong-Soon;Lee, Jin-Seok;Kim, Hyo-Seon;Son, Chang-Gue
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.159-168
    • /
    • 2017
  • Background: Radiotherapy is one of the most important modalities in cancer treatment; however, normal tissue damage is a serious concern. Drug development for the protection or reduction of normal tissue damage is therefore a clinical issue. Herein, we evaluated the protective properties of Panax ginseng Meyer and its corresponding mechanisms. Methods: C56BL/6 mice were orally pretreated with P. ginseng water extract (PGE; 25 mg/kg, 50 mg/kg, or 100 mg/kg) or intraperitoneally injected melatonin (20 mg/kg) for 4 d consecutively, then exposed to 15-Gy X-ray radiation 1 h after the last administration. After 10 d of irradiation, the biological properties of hematoxicity, fat accumulation, histopathology, oxidative stress, antioxidant activity, pro-inflammatory cytokines, and apoptosis signals were examined in the hepatic tissue. Results: The irradiation markedly induced myelosuppression as determined by hematological analysis of the peripheral blood. Steatohepatitis was induced by X-ray irradiations, whereas pretreatment with PGE significantly attenuated it. Oxidative stress was drastically increased, whereas antioxidant components were depleted by irradiation. Irradiation also notably increased serum liver enzymes and hepatic protein levels of pro-inflammatory cytokines. Those alterations were markedly normalized by pretreatment with PGE. The degree of irradiation-induced hepatic tissue apoptosis was also attenuated by pretreatment with PGE, which was evidenced by a terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick-end labeling assay, western blotting, and gene expressions analysis, particularly of apoptotic molecules. Conclusion: We suggest that PGE could be applicable for use against radiation-induced liver injury, and its corresponding mechanisms involve the modulation of oxidative stress, inflammatory reactions, and apoptosis.

Toll-like Receptor3-mediated Induction of Chemokines in Salivary Epithelial Cells

  • Li, Jingchao;Jeong, Mi-Young;Bae, Ji-Hyun;Shin, Yong-Hwan;Jin, Meihong;Hang, Sung-Min;Lee, Jeong-Chai;Lee, Sung-Joong;Park, Kyung-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.4
    • /
    • pp.235-240
    • /
    • 2010
  • Toll-like receptors (TLRs) functionally expressed in salivary epithelial cells, but their roles remain elusive. Among TLRs family, TLR3 is activated by dsRNA, a byproduct of viral infection. The aim of this study was to investigate the role of TLR3 in the inflammatory immune responses using HSG cells. Reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR and ELISA were performed to identify expression of TLRs and TLR3-mediated chemokine inductions. The chemotaxis assay of activated T lymphocytes was also performed. Treatment of HSG cells with polyinosinic: polycytidylic acid (poly(I:C)) significantly increased interferon-$\gamma$-inducible protein 10 (IP-10), interferoninducible T-cell $\alpha$ chemoattractant (I-TAC), and regulated on activation, normal T-cells expressed and secreted (RANTES) gene expressions in a concentration-dependent manner. Anti-TLR3 antibody blocked the increases of IP-10 and I-TAC genes. Poly(I:C)-induced increases of IP-10 and I-TAC were also confirmed at protein levels from cell lysates, but their release into extracellular medium was detected only in IP-10. We found that the culture media from HSG cells stimulated with poly(I:C) significantly increases T lymphocyte migration. Our results suggest that TLR3 plays an important role in chemokine induction, particularly IP-10, in salivary epithelial cells.

MITOCHONDRIAL DNA DELETION AND IMPAIRMENT OF MITOCHONDRIAL BIOGENESIS ARE MEDIATED BY REACTIVE OXYGEN SPECIES IN IONIZING RADIATION-INDUCED PREMATURE SENESCENCE

  • Eom, Hyeon-Soo;Jung, U-Hee;Jo, Sung-Kee;Kim, Young-Sang
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.119-126
    • /
    • 2011
  • Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and $H_2O_2$-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and $H_2O_2$-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-${\beta}$-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

Panaxadiol saponins treatment caused the subtle variations in the global transcriptional state of Asiatic corn borer, Ostrinia furnacalis

  • Liu, Shuangli;Xu, Yonghua;Gao, Yugang;Zhao, Yan;Zhang, Aihua;Zang, Liansheng;Wu, Chunsheng;Zhang, Lianxue
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.123-134
    • /
    • 2020
  • Background: The lepidopteran Asiatic corn borer (ACB), Ostrinia furnacalis (Guenee), has caused huge economic losses throughout the Asian-Western Pacific region. Usually, chemical pesticides are used for the control, but excessive use of pesticides has caused great harm. Therefore, the inartificial ecotypic pesticides to ACB are extremely essential. In our previous study, we found that panaxadiol saponins (PDS) can effectively reduce the harm of ACB by causing antifeedant activity. Therefore, it is necessary to reveal the biological molecular changes in ACB and the functionary mechanism of PDS. Methods: We analyzed the global transcription of ACB with different PDS concentration treatment (5 mg/mL, 10 mg/mL, and 25 mg/mL) by high-throughput sequencing and de novo transcriptome assembly method. Results: PDS treatment could cause the changes of many gene expressions which regulate its signal pathways. The genes in peroxisome proliferator-activated receptor (PPAR) signaling pathway were significantly downregulated, and then, the downstream fatty acid degradation pathway had also been greatly affected. Conclusion: Through this experiment, we hypothesized that the occurrence of antifeedant action of ACB is because the PDS brought about the downregulation of FATP and FABP, the key regulators in the PPAR, and the downregulation of FATP and FABP exerts further effects on the expression of SCD-1, ACBP, LPL, SCP-X, and ACO, which leads to the disorder of PPAR signaling pathway and the fatty acid degradation pathway. Not only that, PDS treatment leads to enzyme activity decrease by inhibiting the expression of genes associated with catalytic activity, such as cytochrome P450 and other similar genes.

Small RNA Transcriptome of Hibiscus Syriacus Provides Insights into the Potential Influence of microRNAs in Flower Development and Terpene Synthesis

  • Kim, Taewook;Park, June Hyun;Lee, Sang-gil;Kim, Soyoung;Kim, Jihyun;Lee, Jungho;Shin, Chanseok
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.587-597
    • /
    • 2017
  • MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus, the national flower of South Korea. We employed high-throughput sequencing of small RNAs obtained from four different tissues (i.e., leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissuespecific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE, which is involved in flower initiation and is duplicated in H. syriacus. Collectively, this study provides the first reliable draft of the H. syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in H. syriacus.

Effect of Rosmarinus officinalis L. Fractions on Antimicrobial Activity against Methicillin-resistant Staphylococcus aureus (MRSA) and Resistant Genes Regulation (로즈마리(Rosmarinus officinalis L.) 추출물의 항생제 내성균주(MRSA)에 대한 항균활성 및 내성 유전자 조절 효과)

  • Choi, Jun-Hyeok;Yu, Mi-Hee;Hwang, Eun-Young;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.5
    • /
    • pp.541-547
    • /
    • 2009
  • This study was performed to evaluate antimicrobial activity of methanol extract from Rosmarinus officinalis L. and their fractions on methicillin-resistant Staphylococcus aureus (MRSA) and resistant gene regulation. The methanol extract of Rosmarinus officinalis L. and their hexane fractions showed the strongest antimicrobial activity against S. aureus and MRSA. To observe the morphological change of MRSA according to the hexane fraction $80{\mu}g$/mL treatment, scanning electron microscope (SEM) of MRSA were measured. The results from SEM showed decreased number of bacteria, lysis and damaged cell wall. Expressions of MecA and penicillinase were substantially decreased in a dose-dependent manner on MRSA that had been treated with methanol extract of Rosmarinus officinalis L. and their hexane fractions.

Changes in SIRT gene expression during odontoblastic differentiation of human dental pulp cells

  • Jang, Young-Eun;Go, Su-Hee;Lee, Bin-Na;Chang, Hoon-Sang;Hwang, In-Nam;Oh, Won-Mann;Hwang, Yun-Chan
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.223-228
    • /
    • 2015
  • Objectives: The aim of this study was to investigate the expression of 7 different sirtuin genes (SIRT1-SIRT7) in human dental pulp cells (HDPCs), and to determine the role of SIRTs in the odontoblastic differentiation potential of HDPCs. Materials and Methods: HDPCs were isolated from freshly extracted third molar teeth of healthy patients and cultulred in odontoblastic differentiation inducing media. Osteocalcin (OCN) and dentin sialophosphoprotein (DSPP) expression was analyzed to evaluate the odontoblastic differentiation of HDPCs by reverse transcription-polymerase chain reaction (RT-PCR), while alizarin red staining was used for the mineralization assay. To investigate the expression of SIRTs during odontoblastic differentiation of HDPCs, real time PCR was also performed with RT-PCR. Results: During the culture of HDPCs in the differentiation inducing media, OCN, and DSPP mRNA expressions were increased. Mineralized nodule formation was also increased in the 14 days culture. All seven SIRT genes were expressed during the odontogenic induction period. SIRT4 expression was increased in a time-dependent manner. Conclusions: Our study identified the expression of seven different SIRT genes in HDPCs, and revealed that SIRT4 could exert an influence on the odontoblast differentiation process. Further studies are needed to determine the effects of other SIRTs on the odontogenic potential of HDPCs.

In Silico Screening for Angiogenesis-Related Genes in Rat Astrocytes

  • Kim, Soo-Young;Lee, Sae-Won;You, Sung Yong;Rha, Sun Young;Kim, Kyu-Won
    • Genomics & Informatics
    • /
    • v.2 no.1
    • /
    • pp.36-44
    • /
    • 2004
  • Astrocytes play supportive roles for neurons in the brain. Recently, they have been accepted to have various functions in the vascular system as well as in the nervous system. We investigated the differential gene expression in rat astrocytes according to the oxygen tension, which is a crucial factor for angiogenesis. A cDNA microarray was performed to find the genes whose expression was sensitive to oxygen tension. We found 26 genes in the astrocyte were found and classified into 4 groups. In order to show the genes' relevancy to angiogenesis, seven of the 26 genes were investigated to see whether they have capabilities of interaction with angiogenesis­related factors in AngioDB. Through this investigation, we found interactions of three proteins with angiogenesis-related factors. These genes were further investigated with a new focus on the vascular endothelial growth factor (VEGF) expression in an astrocyte based on our hypothesis that astrocytes can have effects on endothelial angiogenesis via the release of VEGF. Collectively, we identified several genes whose expressions were dependent on the oxygen concentration of the astrocyte. Furthermore, the relevancy of astrocytes to angiogenesis was investigated using preexisting information of AngioDB, and suggested a possible signaling pathway for VEGF expression in the aspects of brain endothelial angiogenesis by astrocytes.