• 제목/요약/키워드: Gene expression profiles

검색결과 497건 처리시간 0.032초

Differences in Gene Expression Profiles Reflecting Differences in Drug Sensitivity to Acetaminophen in Normal and Transformed Hepatic Cell Lines In vitro

  • Jeong, Youn-Kyoung;Kang, Jin-Seok;Kim, Joo-Whan;Suh, Soo-Kyung;Lee, Michael;Kim, Seung-Hee;Lee, Sang-Kook;Park, Sue-Nie
    • Molecular & Cellular Toxicology
    • /
    • 제5권1호
    • /
    • pp.32-43
    • /
    • 2009
  • Acetaminophen (APAP) overdose is known to cause severe hepatotoxicity mainly through the depletion of glutathione. In this study, we compared the cytotoxic effects of APAP on both a normal murine hepatic cell line, BNL CL.2, and its SV40-transformed cell line, BNL SV A.8. Gene expression profiles for APAP-treated cells were also obtained using microarray and analyzed to identify differences in genes or profiles that may explain the differences of susceptibility to APAP in these cell lines. These two cell lines exhibited different susceptibilities to APAP (0-$5,000{\mu}M$); BNL SV A.8 cells were more susceptible to APAP treatment compared to BNL CL.2 cells. A dose of $625{\mu}M$ APAP, which produced significant differences in cytotoxicity in these cell lines, was tested. Microarray analysis was performed to identify significant differentially expressed genes (DEGs) irrespective of APAP treatment. Genes up-regulated in BNL SV A.8 cells were associated with immune response, defense response, and apoptosis, while down-regulated genes were associated with catalytic activity, cell adhesion and the cytochrome P450 family. Consistent with the cytotoxicity data, no significant DEGs were found in BNL CL.2 cells after treatment with $625{\mu}M$ APAP, while cell cycle arrest and apoptosis-related genes were up-regulated in BNL SV A.8 cells. Based on the significant fold-changes in their expression, a genes were selected and their expressions were confirmed by quantitative real-time RT-PCR; there was a high correlation between them. These results suggest that gene expression profiles may provide a useful method for evaluating drug sensitivity of cell lines and eliciting the underlying molecular mechanism. We further compared the genes identified from our current in vitro studies to the genes previously identified in our lab as regulated by APAP in both C57BL/6 and ICR mice in vivo. We found that a few genes are regulated in a similar pattern both in vivo and in vitro. These genes might be useful to develop as in vitro biomarkers for predicting in vivo hepatotoxicity. Based on our results, we suggest that gene expression profiles may provide useful information for elucidating the underlying molecular mechanisms of drug susceptibility and for evaluating drug sensitivity in vitro for extrapolation to in vivo.

Genome Wide Expression Profile of Agrimonia pilosa in LPS-stimulated BV-2 Microglial Cells

  • Sohn, Sung-Hwa;Ko, Eun-Jung;Kim, Sung-Hoon;Kim, Yang-Seok;Shin, Min-Kyu;Hong, Moo-Chang;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2009
  • Microglial cells constitute the first line of defense against infection and injury in the brain. This study was conducted to evaluate the protective mechanisms of Agrimonia pilosa (AP) on LPS-induced activation of BV-2 microglial cells. The effects of AP on gene expression profiles in activated BV-2 microglial cells were evaluated using microarray analysis. BV-2 microglial cells were cultured in a 100 mm dish ($1{\times}10^7/mL$) for 24 hr and then pretreated with 1 g/mL AP or left untreated for 30 min. Next, 1 g/mL LPS was added to the samples and the cells were reincubated at $37^{\circ}C$ for 30 min, 3 hr and 6 hr. The gene expression profiles of the BV-2 microglial cells varied depending on the AP. The microarray analysis revealed that MAPK signaling pathway-related genes were down-regulated and IL10 gene was up-regulated in AP-treated BV-2 microglial cells. AP can affect the inflammatory response and MAPK pathway in BV-2 microglial cells.

Analysis of Disease Progression-Associated Gene Expression Profile in Fibrillin-1 Mutant Mice: New Insight into Molecular Pathogenesis of Marfan Syndrome

  • Kim, Koung Li;Choi, Chanmi;Suh, Wonhee
    • Biomolecules & Therapeutics
    • /
    • 제22권2호
    • /
    • pp.143-148
    • /
    • 2014
  • Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder caused by mutations in the gene encoding fibrillin-1 (FBN1) and is characterized by aortic dilatation and dissection, which is the primary cause of death in untreated MFS patients. However, disease progression-associated changes in gene expression in the aortic lesions of MFS patients remained unknown. Using a mouse model of MFS, FBN1 hypomorphic mouse (mgR/mgR), we characterized the aortic gene expression profiles during the progression of the MFS. Homozygous mgR mice exhibited MFS-like phenotypic features, such as fragmentation of elastic fibers throughout the vessel wall and were graded into mgR1-4 based on the pathological severity in aortic walls. Comparative gene expression profiling of WT and four mgR mice using microarrays revealed that the changes in the transcriptome were a direct reflection of the severity of aortic pathological features. Gene ontology analysis showed that genes related to oxidation/reduction, myofibril assembly, cytoskeleton organization, and cell adhesion were differentially expressed in the mgR mice. Further analysis of differentially expressed genes identified several candidate genes whose known roles were suggestive of their involvement in the progressive destruction of aorta during MFS. This study is the first genome-wide analysis of the aortic gene expression profiles associated with the progression of MFS. Our findings provide valuable information regarding the molecular pathogenesis during MFS progression and contribute to the development of new biomarkers as well as improved therapeutic strategies.

Gene Expression Profiling in C57BL/6 Mice Treated with the Anorectic Drugs Sibutramine and Phendimetrazine and Their Mechanistic Implications

  • Ko, Moon-Jeong;Choi, Hyo-Sung;Ahn, Joon-Ik;Kim, So-Young;Jeong, Ho-Sang;Chung, Hye-Joo
    • Genomics & Informatics
    • /
    • 제6권3호
    • /
    • pp.117-125
    • /
    • 2008
  • Recently, obesity has become a worldwide public health concern and the use of anorectic drugs has drastically increased. In this study, sibutramine and phendimetrazine, representative marketed anorectics, were repeatedly administered per os on a daily basis into C57BL/6 mice and the effects of these drugs on food intakes, body weight changes and gene expression profiles were monitored for up to following 7 days. Methamphetamine, which has a potent anorectic effect, was used as a positive control. Anorectic effects were sustained only for two days by phendimetrazine or methamphetamine, but for six days by sibutramine. The modulations of gene expressions in the hypothalamus and the striatum were investigated using microarrays on day 2 and day 7 post-administration, which corresponded to the anorectic period and a return of appetite respectively, for all three drugs tested. Differences in overall gene expression profiles in the stratum on day 2 for sibutramine and phendimetrazine seems to reflect difference between the two in terms of the onsets of drug tolerance. According to microarray findings, the Ankrd26 gene appears to have an important anorectic role, whereas the up-regulation of the olfaction system appeared to be involved in the drug tolerance of anorectics. The microarray data presented in this study demonstrates the usefulness of gene expression analysis for gathering information on the efficacy and safety of anorectic drugs.

유방암에서 자기공명영상 근거 영상표현형과 유전자 발현 프로파일 근거 위험도의 관계 (Correlation between MR Image-Based Radiomics Features and Risk Scores Associated with Gene Expression Profiles in Breast Cancer)

  • 김가람;구유진;김준호;김은경
    • 대한영상의학회지
    • /
    • 제81권3호
    • /
    • pp.632-643
    • /
    • 2020
  • 목적 자기공명영상 근거 영상표현형과 생체분자학적 아형, 유전자 발현 프로파일 근거 위험도 등 유방암 유전체 특징의 관계를 분석하고자 하였다. 대상과 방법 The Cancer Genome Atlas와 and the Cancer Imaging Archive에 공개된 자료를 이용하였다. 122개의 유방암의 자기공명영상에서 영상표현형이 추출되었다. 유전자 발현 프로파일에 따라 PAM50아형을 분류하고 위험도를 지정하였다. 영상표현형과 생체분자학적 특징의 관계를 분석하였다. 예측모델을 알아보기 위해 penalized generalized regression analysis를 이용하였다. 결과 PAM50아형은 maximum 2D diameter (p = 0.0189), degree of correlation (p = 0.0386), 그리고 inverse difference moment normalized (p = 0.0337)와 유의하게 관련이 있었다. 위험도 시스템 중에 GGI와 GENE70이 통계적으로 유의하게 8개의 영상표현형 특징을 서로 공유하였다(p = 0.0008~0.0492). Maximum 2D diameter가 두 위험도 시스템에서 가장 유의하게 관련있는 특징이었으나(p = 0.0139, p = 0.0008) 예측모델의 전반적인 연관 정도는 약했고 가장 높은 연관계수는 GENE70이 0.2171이었다. 결론 영상표현형 중에 maximum 2D diameter, degree of correlation, 그리고 inverse difference moment normalized가 PAM50 아형 그리고 GENE70과 같은 유전자 발현 프로파일 근거 위험도와 그 연관도는 약하였으나 유의한 관련을 보였다.

Isolation and Characterization of Parvalbumin Beta Gene from Channel Catfish (Ictalurus punctatus)

  • Kim, Soon-Hag
    • 한국양식학회지
    • /
    • 제16권2호
    • /
    • pp.124-127
    • /
    • 2003
  • Our previous studies of both microarray analysis in channel catfish muscle gene expression of 2 different ages and channel catfish muscle expressed sequence tag profiles demonstrated parvalbumin beta is one of the highly expressed muscle transcriptome. We have cloned and sequenced complementary DNA encoding the channel catfish parvalbumin which encode 109 amino acids. The deduced amino acid sequences of the catfish parvalbumin are highly conserved with those cloned from other teleosts. The availability of the catfish parvalbumin provides the opportunity of studying fish epitopes.

Similarity of Gene Expression Profiles in Primary Brain Tumors with the Toxic Mechanism by Environmental Contaminants

  • Kim, Yu-Ri;Kim, Ki-Nam;Park, Yoon-Hee;Ryu, Yeon-Mi;Sohn, Sung-Hwa;Seo, Sang-Hui;Lee, Seung-Ho;Kim, Hye-Won;Lee, Kweon-Haeng;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.209-215
    • /
    • 2005
  • Recently, a large number of clinical experiments have shown that exposure of organic pollutants lead to various cancers through the abnormal cell growth. Environmental pollutants, such as 2, 3, 7, 8-Tetrachloro dibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons (PAHs), are carcinogen and are known to cause the cognitive disability and motor dysfunction in the developing of brain. The effects of these pollutants on neurodevelopmental disorder is well established, but the underlying mechanism(s) and similarity of gene expression profiles in human brain tumors with organic pollutants still remain unclear. In this study, we first examined the gene expression profiles in glioblastomas compared with meningioma that are kinds of primary human brain tumor by using human cDNA microarray. The results of cDNA microarray analysis revealed that 26 genes were upregulated (Z-ratio>2.0) and 14 genes were downregulated (Z-ratio<-2.0) in glioblastoma compared with meningioma. From the altered gene patterns, mitogen-activated protein kinase (MAPK) signaling related genes, such as MAP2K3, MAP3K11 and jun activated domain binding protein, and transcription factors, such as UTF2 and TF12, were upregulated in glioblastoma. Also, we tried to investigate the relation between important genes up- and down-regulated in giloblastoma and various organic pollutants. Therefore, the identification of changes in the patterns of gene expression may provide a better understanding of the molecular mechanisms involved in human primary brain tumors and of the relation between gene expression profiles and organic pollutants in brain tissue.

Construction and Validation of Human cDNA Microarray for Estimation of Endocrine Disrupting Chemicals (KISTCHIP-400 ver. 1.0)

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Molecular & Cellular Toxicology
    • /
    • 제1권1호
    • /
    • pp.52-61
    • /
    • 2005
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an awareness of endocrine disrupting chemicals (EDCs) and their potential screening methods to identify endocrine activity have been increased. Here we developed an in-house cDNA microarray, named KISTCHIP-400 ver. 1.0, with 416 clones, based on public database and research papers. These clones contained estrogen, androgen, thyroid hormone & receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. Also, to validate the KISTCHIP-400 ver. 1.0, we investigated gene expression profiles with reference hormones, $10^{8}\;M\;17{\beta}-estradiol,\;10^{-7}\;M\;testosterone\;and\;10^{-7}\;M$ progesterone in MCF-7 cell line. As the results, gene expression profiles of three reference hormones were distinguished from each other with significant and identified 33 $17{\beta}-estradiol$ responsive genes. This study is in first step of validation for KISTCHIP-400 ver. 1.0, as following step transcriptional profile analysis on not only low concentrations of EDCs but suspected EDCs using KISTCHIP-400 ver. 1.0 is processing. Our results indicate that the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

Gene Expression Profiles of Dibutyl Phthalate and 17$\beta$-Estradiol using cDNA microarray in MCF 7 Human Breast Cancer Cell Line

  • Ryu, Jae-Chun;Kim, Hyung-Tae;Kim, Youn-Jung
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권4호
    • /
    • pp.274-278
    • /
    • 2002
  • Phthalates, suspected endocrine disruptor, are plasticizer and solvent used in industry, and some phthalates are known as potential carcinogen. Most common human exposure to this compounds may occur with contaminated food. It may migrate into food from plastic wrap or may enter food from general environmental contamination, and it has become widespread environmental pollutants, thus leading to a variety of phthalates that possibly threaten the public health. Dibutyl phthalate (DBP) may playa part of cell proliferator, which mediates changes in gene expression and the metabolism of xenobiotics. An understanding of the role of DBP in modulating gene regulation should provide insight regarding mechanisms of DBP induced xenoestrogenic impact. To elucidate the type of genes that are associated with estrogenic activity induced by DBP at the dose (10$^{-8}$ M) appeared proliferating effects, the pattern of gene expression in MCF7 cells was compared between 17$\beta$-estradiol and DBP exposure in the cDNA microarray. From the results, it showed some differences of gene expression patterns between MCF7 cells treated with 17$\beta$-estradiol and DBP, and also DBP shows estrogenic potential with changes in estrogen-related gene expression levels.

  • PDF

Genome Wide Expression Profile of Asiasarum sieboldi in LPS-stimulated BV-2 Microglial Cells

  • Sohn, Sung-Hwa;Ko, Eun-Jung;Kim, Yang-Seok;Shin, Min-Kyu;Hong, Moo-Chang;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.205-210
    • /
    • 2008
  • Recent studies suggest that activated microglial cells play an essential role in the inflammatory responses and neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. This study was conducted to evaluate the protective mechanisms of Asiasarum sieboldi (AS) on LPS-induced activation of BV-2 microglial cells. The effects of AS on gene expression profiles in activated BV-2 microglial cells were evaluated using microarray analysis. BV-2 microglial cells were cultured in a 100 mm dish ($1{\times}10^7$/mL) for 24 h and then pretreated with 1 ${\mu}g$/mL AS or left untreated for 30 min. Next, 1 ${\mu}g$/mL LPS was added to the samples and the cells were reincubated at $37^{\circ}C$ for 30 min and 1 hr. The gene expression profiles of the BV-2 microglial cells varied depending on the AS. The microarray analysis revealed that MAPK signaling pathway-related genes were downregulated in AS-treated BV-2 microglial cells. AS can affect the neuroinflammatory-related pathway such as MAPK signaling pathway in activated BV-2 microglial cells.