• Title/Summary/Keyword: Gene and promoter structure

Search Result 71, Processing Time 0.028 seconds

Structure of Spodoptera exigua Nucleopolyhedrovirus p10 Gene (파밤나방 핵다각체병 바이러스의 p10 유전자 구조)

  • 최재영;우수동;홍혜경;이해광;제연호;강석권
    • Korean journal of applied entomology
    • /
    • v.38 no.2
    • /
    • pp.145-149
    • /
    • 1999
  • To develop the baculovirus expression vector system (BEVS) adopting p10 gene promoter of Spodoptera exigua nucleopolyhedrovirus (SeNPV), we characterized the p10 gene of SeNPV. The nucleotide sequence of 545 bases including the coding region of p10 gene was determined. Compared with the previously reported SeNPV p10 gene (Zuidema et al., 1993), 4 bases were different in the 5' and 3' flanking region but no difference was found in the coding region. The p10 gene was located within Xho I 1.5 Kb, Sph 1 2.4 Kb and Cla I 4.0 Kb fragments by Southern hybridization analysis. Also, the Sph I 2.4 Kb and the Cla I 4.0 Kb fragments were cloned and their restriction enzyme maps were determined.

  • PDF

Comparative Evaluation on Qualitative PCR using Different Extraction Methods for Nucleic Acids on Soybean and Corn Processed Foods (대두 및 옥수수 가공식품에서 유전자재조합체(GMO)의 정성 PCR분석을 위한 핵산 추출방법별 비교)

  • 김영찬;이철수;황순욱;김성조;이영옥;윤성원;서정화;남용석
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.1
    • /
    • pp.6-13
    • /
    • 2003
  • Various kinds of genetically modified organisms (GMO) and processed foods have been developed during recent years. Genetically modified organisms can be classified into several groups as their development methods. Generally, GMO has three foreign DNA regions such as gene expression adjustment region(Promoter), termination region (terminator) and structure gene. Detection of these regions can be done particularly by polymerase chain reaction (PCR). PCR-based detection can virtually be performed for any GMO within short of time. The most important prerequisite for the application of PCR-based detection is to decide abstraction method of efficient nucleic acids. Specially, in the case of processed food, because nucleic acids of foodstuffs are damaged by heat treatment (sterilization), pressure and fermentation, DNA must be extracted ken the samples prior to PCR analysis. Although many DNA extraction protocols are available, they have rarely been compared in a comprehensive method. In this study low widely used commercial and non-commercial DNA extraction methods-DNeasy$^{TM}$, Wizard$^{TM}$, CTAB, phenol/chloroform system-were compared with respect to the quality and yield of nucleic acids and insertion genes.nes.

Development of an ${\alpha}-amylase-hyperproducing$ mutant of Bacillus licheniformis and its characteristics (${\alpha}-Amylase$ 고생산성 Bacillus licheniformis 변이주의 개발과 특성 분석)

  • Jeong, Heo-Jin;Jung, Kyung-Hwa;Chang, Jong-Soo;Yoon, Ki-Hong;Park, Seung-Hwan;Kim, Hoon
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.18-22
    • /
    • 1998
  • A mutant strain which hyperproduced thermostable ${\alpha}-amylase$ was obtained by chemical mutagenesis of Bacillus licheniformis. The mutant strain, SK-5, produced the enzyme about 50 times higher than the original strain. The mutant was longer and slimmer in shape, slower in growth compared to the original strain. Nucleotide sequence analysis of the SK-5 ${\alpha}-amylase$ gene revealed no changes in the the structural gene. The changes found in the promoter region might be responsible for the hyperproduction of the enzyme by the mutant. No structural changes in the enzyme structure could be observed when the secreted enzymes at various culture times were analyzed by Western blot.

  • PDF

Characteristics of Structure and Expression Pattern of ADSF/resistin Gene in Korean Native Cattle

  • Kang, Hye Kyeong;Park, Ji Ae;Seo, Kang Seok;Kim, Sang Hoon;Choi, Yun Jai;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.329-334
    • /
    • 2006
  • Adipocyte-specific secretory factor (ADSF)/resistin, a hormone, is a small cysteine-rich protein secreted from adipose tissue and has been implicated in modulating adipogenesis in humans and rodents. The objective of this study was to clone a gene encoding ADSF/resistin and to characterize its function in Korean Native Cattle (Hanwoo). The coding sequence was 330 base pairs and it encoded a protein of 109 amino acids. An NCBI BLAST-search revealed the cloned cDNA fragment shared significant homology (82%) with the cDNA encoding the human ADSF/resistin. The nucleotide sequence homology of the Hanwoo sequence was 73% and 64% for the rat and mouse, respectively. A 654 bp ADSF/resistin gene promoter was cloned and putative binding sites of transcription factors were identified. Tissue distribution of ADSF mRNA was examined in liver, skeletal muscles (tenderloin, biceps femoris), subcutaneous fat, and perirenal fat by RT-PCR. ADSF mRNAs were detected in fat tissues but not in liver and muscles, suggesting that ADSF/resistin expression may be induced during adipogenesis. Although, the physiological function of ADSF/resistin in the cow remains to be determined, these data indicate ADSF is related to the adipocyte phenotype and may have a possibly regulatory role in adipocyte function.

Cloning and expression of Lipomyces starkeyi dextranase-encoding gene in yeasts

  • Kang, Hee-Kyoung;Park, Ji-Young;An, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.402-406
    • /
    • 2005
  • Lipomyces starkeyi produces a novel glucanhydrolase containing endo-dextranase and ${\alpha}-amylase$ activities. A cDNA from L. starkeyi encoding a dextranase was isolated and characterized. The 2,052 kb cDNA fragment (lsd1) carrying dextranase gene showed one open reading frame (ORF) composed of 1,824 bp flanked by a 41 bp 5'-UTR and a 184 bp 3'-UTR including a poly(A) tail of 27 bp. The ORF encodes for a 608 amino acid with a predicted molecular mass of 67.6 kDa. There was 77% deduced amino acid sequence identity between the LSD1 dextranase and the dextranase from Penicillium minioluteum. The primary structure of the dextranase from L. starkeyi has distant similarity with enzymes belonging to glycosyl hydrolase family 49. The lsd1 protein was expressed in the Saccharmyces cerevisiae under control of GAL1 promoter and active dextranase was produced.

  • PDF

Regulatory Viral and Cellular Elements Required for Potato Virus X Replication

  • Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.115-122
    • /
    • 2001
  • Potato virus X (PVX) is a flexuous rod-shaped virus containing a single plus-strand RNA. Viral RNA synthesis is precisely regulated by regulatory viral sequences and by viral and/or host proteins. RNA sequence element as well as stable RNA stem-loop structure in the 5' end of the genome affect accumulation of genomic RNA and subgenomic RNA (sgRNA). The putative sgRNA promoter regions upstream of the PVX triple gene block (TB) and coat protein (CP) gene were critical for both TB and CP sgRNA accumulation. Mutations that disrupted complementarity between a region at the 5' end of the genomic RNA and the sequences located upstream of each sgRNA initiation site is important for PVX RNA accumulation. Compensatory mutations that restore complementarity restored sgRNA accumulation levels. However, the extent of reductions in RNA levels did not directly correlate with the degree of complementarity, suggesting that the sequences of these elements are also important. Gel-retardation assays showed that the 5' end of the positive-strand RNA formed an RNA-protein complex with cellular proteins, suggesting possible involvement of cellular proteins for PVX replication. Future studies on cellular protein binding to the PVX RNA and their role in virus replication will bring a fresh understanding of PVX RNA replication.

  • PDF

Transcriptional Regulation of Genes by Enhancer RNAs (인핸서 RNA에 의한 유전자 전사 조절)

  • Kim, Yea Woon;Kim, AeRi
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.140-145
    • /
    • 2016
  • Genes in multicellular organisms are transcribed in development, differentiation, or tissue-specific manners. The transcription of genes is activated by enhancers, which are transcription regulatory elements located at long distances from the genes. Recent studies have reported that noncoding RNAs are transcribed from active enhancers by RNA polymerase II (RNA Pol II); these are called enhancer RNAs (eRNAs). eRNAs are transcribed bi-directionally from the enhancer core, and are capped on the 5’ end but not spliced or polyadenylated on the 3’ end. The transcription of eRNAs requires the binding of transcription activators on the enhancer and associates positively with the transcription of the target gene. The transcriptional inhibition of eRNAs or the removal of eRNA transcripts results in the transcriptional repression of the coding gene. The transcriptional procedure of eRNAs causes enhancer- specific histone modifications, such as histone H3K4me1/2. eRNA transcripts directly interact with Mediator and Rad21, a cohesin subunit, generating a chromatin loop structure between the enhancer and the promoter of the target gene. The recruitment of RNA Pol II into the promoter and its elongation through the coding region are facilitated by eRNAs. Here, we will review the features of eRNAs, and discuss the mechanism of eRNA transcription and the roles of eRNAs in the transcriptional activation of target genes.

The Influence of the Nucleotide Sequences of Random Shine-Dalgarno and Spacer Region on Bovine Growth Hormone Gene Expression

  • Paik Soon-Young;Ra Kyung Soo;Cho Hoon Sik;Koo Kwang Bon;Baik Hyung Suk;Lee Myung Chul;Yun Jong Won;Choi Jang Won
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.64-71
    • /
    • 2006
  • To investigate the effects of the nucleotide sequences in Shine-Dalgarno (SD) and the spacer region (SD-ATG) on bovine growth hormone (bGH) gene expression, the expression vectors under the control of the T7 promoter (pT7-7 vector) were constructed using bGH derivatives (bGH1 & bGH14) which have different 5'-coding regions and were induced in E. coli BL21 (DE3). Oligonucleotides containing random SD sequences and a spacer region were chemically synthesized and the distance between the SD region and the initiation codon were fixed to nine bases in length. The oligonucleotides were annealed and fused to the bGH1 and bGH14 cDNA, respectively. When the bGH gene was induced with IPTG in E. coli BL21(DE3), some clones containing only bGH14 cDNA produced considerable levels of bGH in the range of $6.9\%\;to\;8.5\%$ of total cell proteins by SDS-PAGE and Western blot. Otherwise, the bGH was not detected in any clones with bGH1 cDNA. Accordingly, the nucleotide sequences of SD and the spacer region affect on bGH expression indicates that the sequences sufficiently destabilize the mRNA secondary structure of the bGH14 gene. When the free energy was calculated from the transcription initiation site to the +51 nucleotide of bGH cDNA using a program of nucleic acid folding and hybridization prediction, the constructs with values below -26.3 kcal/mole (toward minus direction) were not expressed. The constructs with the original sequence of bGH cDNA also did not show any expression, regardless of the free energy values. Thus, the disruption of the mRNA secondary structure may be a major factor regulating bGH expression in the translation initiation process. Accordingly, the first stem-loop among two secondary structures present in the 5'-end region of the bGH gene should be disrupted for the effective expression of bGH.

Variation of fibrinolytic enzyme activity produced Bacillus subtilis by gene cloning (유전자 cloning에 의한 Bacillus subtilis의 fibrinolytic enzyme 활성 변화)

  • 이홍석;유천권;이철수;강상모
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.14-20
    • /
    • 2000
  • The transformation of Bacillus subtilis K-54 and J-10 was carried out with constructed vectors containing structure and enhancer genes of aprN and prtR, to increase their fibrinolytic enzyme activity. Bands for the aprN and prtR genes were identified from B. subtilis J-10 by PCR that was carried out with the constructed primers for the genes. In addition, the gene fragments contained promoter site based on the results of analysing their nucleotide sequence. The two gene fragments, aprN and prtR, obtained by the PCR, were, then, inserted to vector such as T-vector and E.coli/Bacillus shuttle vector. The constructed vector were designated as pAPR2 (aprN), pENC2 (prtR) and pFLA1 (aprN and prtR), respectively. The constructed vector was used for transformation of the strains of B.subtilis J-10 and B. subtilis K-54 and the fribrinolytic activity of the transformed strains was investigated. The introduction of the vector, pAPR2 and the fibrinolytic activity of the transformed strains was investigated. The introduction of the vector, pAPR2 and pFLA1, resulted in the increase of fibrinolyitic enzyme activity in B. subtilis J-10 by 27.3% and 16%, respectively. However, the introduction of pENC2 to B. subtilis J-10 did not seem to induce increase of the enzyme activity. The strain of B.subtilis K-54 transformed with pENC2 showed an increased fibrinolytic activity by 5 folds compared with that of the original strain of B. subtilis K-54.

  • PDF

Molecular Cloning and Characterization of the Yew Gene Encoding Squalene Synthase from Taxus cuspidata

  • Huang, Zhuoshi;Jiang, Keji;Pi, Yan;Hou, Rong;Liao, Zhihua;Cao, Ying;Han, Xu;Wang, Qian;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.625-635
    • /
    • 2007
  • The enzyme squalene synthase (EC 2.5.1.21) catalyzes a reductive dimerization of two farnesyl diphosphate (FPP) molecules into squalene, a key precursor for the sterol and triterpene biosynthesis. A full-length cDNA encoding squalene synthase (designated as TcSqS) was isolated from Taxus cuspidata, a kind of important medicinal plants producing potent anti-cancer drug, taxol. The full-length cDNA of TcSqS was 1765 bp and contained a 1230 bp open reading frame (ORF) encoding a polypeptide of 409 amino acids. Bioinformatic analysis revealed that the deduced TcSqS protein had high similarity with other plant squalene synthases and a predicted crystal structure similar to other class I isoprenoid biosynthetic enzymes. Southern blot analysis revealed that there was one copy of TcSqS gene in the genome of T. cuspidata. Semi-quantitative RT-PCR analysis and northern blotting analysis showed that TcSqS expressed constitutively in all tested tissues, with the highest expression in roots. The promoter region of TcSqS was also isolated by genomic walking and analysis showed that several cis-acting elements were present in the promoter region. The results of treatment experiments by different signaling components including methyl-jasmonate, salicylic acid and gibberellin revealed that the TcSqS expression level of treated cells had a prominent diversity to that of control, which was consistent with the prediction results of TcSqS promoter region in the PlantCARE database.