• Title/Summary/Keyword: Gene Regulation

Search Result 2,196, Processing Time 0.041 seconds

Gene Expression of Surfactant Protein B and C in Endotoxin and Thiourea Treated Rats (내독소 및 Thiourea 투여 후 Surfactant protein B와 C 유전자 발현의 비교 관찰)

  • Sohn, Dong Hyun;Sohn, Jang Won;Yoon, Ho Joo;Shin, Dong Ho;Park, Sung Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.5
    • /
    • pp.510-521
    • /
    • 2003
  • Background : The surfactant specific proteins, SP-B and SP-C are believed to be important regulators of the surfactant function and homeostasis. Since acute respiratory distress syndrome(ARDS) is usually viewed as the functional and morphological expression of a similar underlying lung injury caused by a variety of insults, and since abnormalities in the surfactant function have been described in ARDS, the authors investigated the different effects of endotoxin and thiourea on the accumulation of mRNA encoding SP-B and SP-C. Methods : Sprague-Dawley rats were given 5 mg/kg of an intraperitoneal endotoxin from Salmonella enteritidis and 3.5 mg/kg intraperitoneal thiourea and were sacrificed at different time periods. Results : 1. The SP-B mRNA levels 6 and 24 hours after the 5 mg/kg endotoxin treatment was significantly reduced by 26.1% and 50%, respectively(P<0.01, P<0.001). 2. The SP-B mRNA levels 24 hours after the 3.5 mg/kg thiourea treatment was reduced by 9.8% and 12.5%, respectively. 3. The SP-C mRNA levels 6 and 24 hours after the 5 mg/kg endotoxin treatment was significantly reduced by 38.7% and 53.6%, respectively(P<0.01, P<0.001). 4. The SP-C mRNA level 6 hours after the 3.5 mg/kg thiourea treatment was reduced by 22.8%(P<0.05). Conclusion : These results indicate that the differential regulation of the hydrophobic surfactant proteins in vivo is evident, and suggest that the hydrophobic surfactant proteins might be differentially regulated during lung injury at different time periods without altering the lung wet to dry ratios. The mechanism of these alternations at the different time periods and the different kinds of etiology remain to be determined.

Antioxidants and Anti-obesity Activities of Hot Water and Ethanolic Extracts from Cheonnyuncho (Opuntia humifusa) (천년초의 열수 및 에탄올 추출물의 항산화 및 항비만 활성)

  • Kim, Dae-Jung;Jung, Ji-Hoon;Kim, Sun-Gu;Lee, Hya-Ku;Lee, Seong-Kap;Hong, Hee-Do;Lee, Boo-Yong;Lee, Ok-Hwan
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.366-373
    • /
    • 2011
  • Recent studies suggested that Cheonnyuncho is a significant source of bioactive phenolic compounds, comparable to phytochemicals, including green tea and onion. In this study, the hot-water and 80% ethanolic extracts of Cheonnyuncho were assessed as to their total phenol content, total flavonoids content, antioxidant activity (DPPH radical-scavenging activity and reducing power), and anti-obesity activity. The results showed that the total phenol contents of the hot water extract and the 80% ethanolic extract were $16.52{\pm}3.87$ and $13.44{\pm}0.85$ mg GAE/g, respectively. The total flavonoids content was detected only in the 80% ethanolic extract, however, with a 778.08 ${\mu}g$ catechin equivalents/g content. The DPPH radical-scavenging activity and reducing power of the 80% ethanolic extract from Cheonnyuncho was significantly higher than those of the water extract (p < 0.05). During the adipocyte differentiation, the 80% ethanolic extract of Cheonnyuncho more significantly inhibited lipid accumulation and ROS production than the 3T3-L1 cells that were treated with hot water extract. Furthermore, the 80% ethanolic extract of Cheonnyuncho suppressed the mRNA abundance of the adipogenic transcription factor, $PPAR{\gamma}$ (peroxisome proliferator-activated receptor ${\gamma}$), and its target gene, aP2 (adipocyte protein 2). These results indicate that Cheonnyuncho extracts can inhibit adipogenesis through a mechanism that involves direct down regulation of $PPAR{\gamma}$ gene expression or via modulation of ROS production associated with radical-scavenging activities.

Whitening activity of Ficus carica L. fruits extract through inhibition of tyrosinase and MITF expression (무화과(Ficus carica L.) 열매 추출물의 tyrosinase 및 MITF 발현 억제를 통한 미백 활성)

  • Min Ji Kim;Si Eun Park;Geun soo Lee;Jin Hwa Kim;Sunwoo Kwon;Hyung Seo Hwang
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.204-212
    • /
    • 2023
  • Whitening is inhibitory activity of the melanin synthesis of melanocytes. Recently, whitening materials have been developed on natural materials because of its side effects on skin. Figs (Ficus Carica L.) is a fruit belonging to the Moraceae family and whitening activity was reported in focusing on the fig's stem and leaf components, but whitening activity of the figs fruit was not known. Thus, in this study, we tried to observe its anti-melanogenesis as well as antioxidant and anti-inflammation. The radical scavenging activity of figs fruits extract (FFE) was observed as the level of 34.52±1.98%/60.71±1.26% compared to the control in the its maximum concentration in the DPPH/ABTS assay. Cytotoxicity of FFE was observed at 10% concentration by CCK8 assay, so the maximum concentration was set at 5% and applied to all experiments. FFE concentration dependently decreased NO production associated with inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6 and tumor necrosis factor-α gene expression, these strongly suggesting anti-inflammatory activity. In melanin contents assay, FFE significantly down-regulated melanin production in α-MSH-stimulated B16F10 cell as well as tyrosinase inhibition in vitro. In addition, FFE decreased the Microphthalmia-associated transcription factor (MITF) mRNA expression about 94.34% compared to the α-MSH treatment group in RT-PCR. Finally, FFE significantly reduced the MITF, cAMP response element-binding protein and tyrosinase protein expression in the α-MSH stimulated B16F10 cell. Through these results, we found that FFE can not only directly inhibit tyrosinase enzyme activity but also suppress melanogenesis through regulation of MITF gene expression in α-MSH signal transduction.

Expression of TIMP1, TIMP2 Genes by Ionizing Radiation (이온화 방사선에 의한 TIMP1, TIMP2 유전자 발현 측정)

  • Park Kun-Koo;Jin Jung Sun;Park Ki Yong;Lee Yun Hee;Kim Sang Yoon;Noh Young Ju;Ahn Seung Do;Kim Jong Hoon;Choi Eun Kyung;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.171-180
    • /
    • 2001
  • Purpose : Expression of TIMP, intrinsic inhibitor of MMP, is regulated by signal transduction in response to genotoxins and is likely to be an important step in metastasis, angiogenesis and wound healing after ionizing radiation. Therefore, we studied radiation mediated TIMP expression and its mechanism in head and neck cancer cell lines. Materials and Methods : Human head and neck cancer cell lines established at Asan Medical Center were used and radiosensitivity $(D_0)$, radiation cytotoxicity and metastatic potential were measured by clonogenic assay, n assay and invasion assay, respectively. The conditioned medium was prepared at 24 hours and 48 hours after 2 Gy and 10 Gy irradiation and expression of TIMP protein was measured by Elisa assay with specific antibodies against human TIMP. hTIMP1 promoter region was cloned and TIMP1 luciferase reporter vector was constructed. The reporter vector was transfected to AMC-HN-1 and -HN-9 cells with or without expression vector Ras, then the cells were exposed to radiation or PMA, PKC activator. EMSA was peformed with oligonucleotide (-59/-53 element and SP1) of TIMP1 promoter. Results : $D_0$ of HN-1, -2, -3, -5 and -9 cell lines were 1.55 Gy, 1.8 Gy, 1.5 Gt, 1.55 Gy and 2.45 Gy respectively. n assay confirmed cell viability, over $94\%$ at 24hrs, 48hrs after 2 Gy irradiation and over 73% after 10 Gy irradiation. Elisa assay confirmed that cells secreted TIMP1, 2 proteins continuously. After 2 Gy irradiation, TIMP2 secretion was decreased at 24hrs in HN-1 and HN-9 cell lines but after 10 Gy irradiation, it was increased in all cell lines. At 48hrs after irradiation, it was increased in HN-1 but decreased in HN-9 cells. But the change in TIMP secretion by RT was mild. The transcription of TIMP1 gene in HN-1 was induced by PMA but in HN-9 cell lines, it was suppressed. Wild type Ras induced the TIMP-1 transcription by 20 fold and 4 fold in HN-1 and HN-9 respectively. The binding activity to -59/-53, AP1 motif was increased by RT, but not to SP1 motif in both cell lines. Conclusions : We observed the difference of expression and activity of TIMPs between radiosensitive and radioresistant cell line and the different signal transduction pathway between in these cell lines may contribute the different radiosensitivity. Further research to investigate the radiation response and its signal pathway of TIMPs is needed.

  • PDF

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF

Mycoplasma pneumoniae-induced production of proasthmatic mediators in airway epithelium (인체 기관지 상피세포에서 Mycoplasma pneumoniae 감염에 의한 천식 매개물질의 발현)

  • Kim, Kyung Won;Lee, Byung Chul;Lee, Kyung Eun;Kim, Eun Soo;Song, Tae Won;Park, Mi Yeoun;Sohn, Myung Hyun;Kim, Kyu-Earn
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.9
    • /
    • pp.977-982
    • /
    • 2006
  • Purpose : There has been an increasing amount of literature concerning the association between Mycoplasma pneumoniae and asthma pathogenesis. Interleukin(IL)-6 stimulates the differentiation of monocytes, and can promote Th2 differentiation and simultaneously inhibit Th1 polarization. IL-8 is a potent chemoattractant and, it has been suggested, has a role in asthma pathogenesis. Nitric oxide (NO) synthesized by airway epithelium may be important in the regulation of airway inflammation and reactivity. Vascular endothelial growth factor(VEGF) has been reported to be a mediator of airway remodeling in asthma. We investigated the effects of M. pneumoniae on IL-6, IL-8, NO and VEGF production in human respiratory epithelial cells. Methods : A549 cells were cultured and inoculated with M. pneumoniae at a dose of 20 cfu/cell. After infection, the presence of M. pneumoniae in epithelial cell cultures was monitored by immunofluorescence and confirmed by polymerase chain reaction(PCR) detection. IL-6, IL-8 and VEGF were determined by an enzyme-linked immunosorbent assay and reverse transcriptase-polymerase chain reaction. NO was measured using the standard Griess reaction. Results : In A549 cells, M. pneumoniaeinduced IL-6, IL-8, NO and VEGF release in time-dependent manners. It also induced mRNA expression of IL-6, IL-8 and VEGF in similar manners. Conclusion : These observations suggest that M. pneumoniae might have a role in the pathogenesis of the allergic inflammation of bronchial asthma.

Inhibitory Effect of Steviol and Its Derivatives on Cell Migration via Regulation of Tight Junction-related Protein Claudin 8 (스테비올 및 그 유도체의 세포연접 관련 클라우딘 8 발현 조절을 통한 세포이동 저해효과)

  • Choi, Sun Kyung;Cho, Nam Joon;Cho, Uk Min;Shim, Joong Hyun;Kim, Kee K.;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.403-412
    • /
    • 2016
  • The tight junction, one of Intercellular junctions, performs a variety of biological functions by bonding adjacent cells, including the barrier function to control the movement of the electrolyte and water. Recent studies have revealed that unusual expression of tight junction-related genes have been shown to be related in cancer development and progression. Recently, there are many reports that control of tight junction proteins expression is closely related to the skin moisture. In this study, we are focusing on the regulating mechanism of tight junction-associated genes by the steviol and its derivatives. Steviol, used as a sweetner, is known to chemical compound isolated from stevia plant. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay was carried out in HaCaT cells (human keratinocyte cell line) in order to determine the cytotoxicity. As a result, while steviol showing cytotoxicity from $250{\mu}M$, steviol derivatives are not cytotoxic more than $250{\mu}M$ concentration. We have observed a change in the tight junction protein via quantitative real-time PCR. Claudin 8 among tight junction proteins is only significantly reduced up to 30% in the presence of steviol. In addition, cell migration was inhibited by steviol, not by stevioside and rebaudioside. Finally, we could observe that steviol, not stevioside and rebaudioside, is able to increase the skin barrier permeability through the transepithelial electric resistance (TEER) measurements. These results suggest that the steviol and its derivatives are specifically acts on the tight junction related gene expression, but steviol derivatives are more suitable as a cosmetic material.

Characterization of SID2 that is required for the production of salicylic acid by using β-GLUCURONIDASE and LUCIFERASE reporter system in Arabidoposis (리포트 시스템을 이용한 살리실산 생합성 유전자 SID2의 발현 해석)

  • Hong, Mi-Ju;Cheong, Mi-Sun;Lee, Ji-Young;Kim, Hun;Jeong, Jae-Cheol;Shen, Mingzhe;Ali, Zahir;Park, Bo-Kyung;Choi, Won-Kyun;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.169-176
    • /
    • 2008
  • Salicylic acid(SA) is a phytohormone that is related to plant defense mechanism. The SA accumulation is triggered by abiotic and biotic stresses. SA acts as a signal molecular compound mediating systemic acquired resistance and hypersensitive response in plant. Although the role of SA has been studied extensively, an understanding of the SA regulatory mechanism is still lacking in plants. In order to comprehend SA regulatory mechanism, we have been transformed with a SID2 promoter:GUS::LUC fusion construct into siz1-2 mutant and wild plant(Col-0). SIZ1 encodes SUMO E3 ligase and negatively regulates SA accumulation in plants. SID2(SALICYLIC ACID INDUCTION DEFICIENT2) is a crucial enzyme of SA biosynthesis. The Arabidopsis SID2 gene encodes isochorismate synthase(ICS) that controls SA level by conversion of chorismate to isochorismate. We compared the regulation of SID2 in wild-type and siz1-2 transgenic plants that express SID2 promoter:GUS::LUC constructs respectively. The expressions of $\beta$-GLUCURONIDASE and LUCIFERASE were higher in siz 1-2 transgenic plant without any stress treatment. SID2 promoter:GUS::LUC/siz1-2 transgenic plant will be used as a starting material for isolation of siz1-2 suppressor mutants and genes involved in SA-mediated stress signaling pathway.

Expression of Serotonin(5-HT) Receptor Isotypes in Reproductive Organs of Male Rat (수컷 흰쥐 생식기관에서의 세로토닌 수용체 아형 유전자 발현)

  • 이성호
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.111-115
    • /
    • 2002
  • 5-Hydroxytryptamine(5-HT; serotonin) system has been implicated in the modulation of male sexual behaviors and the secretion of reproductive hormones. In human males, selective serotonin re-uptake inhibitors(SSRIs) are known to improve the major male sexual dysfunction, premature ejaculation, through the central nervous system-mediated pathways. As numerous hormone and local factors, 5-HT may have peripheral role in the regulation of male sexual function. The expression of 5-HT receptor subtypes in the target tissue, however, has not been explored yet. The present study was undertaken to test whether the 5-HT receptor subtypes are expressed in the reproductive tissues of male rat, especially in ejaculatory machinery such as seminal vesicle and vas deferens. To do this, reverse transcription-polymerase chain reaction(RT-PCR) and Southern blot analysis were employed. The transcripts for the 1A, 1B and 2C subtypes of 5-HT receptor were amplified in all the tested tissues. The present study demonstrated the expression of 5-HT receptor in the rat ejaculatory machinery, suggesting that 5-HT may play a pivotal role in the male sexual function via not only central pathway but also peripheral route. Further study on the receptor subtype-specific effect and their harmonized mode of action will be needed to establish the understanding of ejaculation mechanism and drug design.

  • PDF

Effect of Ethane 1,2-Dimethane Sulfonate(EDS) on the Expression of Pituitary Gonadotropin in Male Rats (수컷 흰쥐 뇌하수체의 생식소자극호르몬 발현에 미치는 Ethane 1,2-Dimethane Sulfonate(EDS)의 효과)

  • Son, Hyeok-Joon;Kim, Soo-Woong;Paick, Jae-Seung;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2007
  • Ethane 1,2-dimethane sulfonate(EDS), a toxin which specifically kills Leydig cells(LC), has been widely used to prepare the reversible testosterone(T) depletion rat model. In the present study, we monitored the gene expression profiles of pituitary gonadotropins, LH and FSH, up to 7 weeks after EDS injection. Adult male Sprague-Dawley rats($300{\sim}350\;g$ B.W.) were injected with a single dose of EDS(75 mg/kg i.p.) and sacrificed on weeks 0, 1, 2, 3, 4, 5, 6 and 7. Total RNAs were purified from each pituitary, and the message levels of common alpha subunit($C{\alpha}$) of pituitary glycoprotein hormones, LH beta subunit($LH{\beta}$), FSH beta subunit($FSH{\beta}$) and GnRH receptor(GnRH-R) were evaluated by semi-quantitative RT-PCRs. The message levels of $C{\alpha}$ increased sharply during weeks 1-4, then return to the control level on week 5. The mRNA levels of $LH{\beta}$ were elevated after week 2, reached the peak at week 4, then declined to the control level after week 5. The message levels of $FSH{\beta}$ were elevated after week 2, reached the peak at week 3, then declined to the nadir at week 5. Similarly, the mRNA levels of GnRH-R were elevated after week 2, reached the peak at week 3, then gradually declined to the control level after week 5. The present study indicated that EDS treatment could induce reversible alterations in the transcriptional activities of gonadotropin subunits and GnRH-R in the anterior pituitary from male rats. EDS injection model might be useful to understand the mechanism of hormonal regulation of hypothalamus- pituitary neuroendocrine axis in male rats.

  • PDF