• Title/Summary/Keyword: Gene Identification

Search Result 1,726, Processing Time 0.035 seconds

Spinocerebellar ataxia 7 (SCA7) (척수소뇌성 운동실조증 제7형)

  • Seon-Yong, Jeong;Seok-Hun, Jang;Hyon-J., Kim
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.22-37
    • /
    • 2007
  • The autosomal dominant spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases, clinically and genetically heterogeneous, characterized by degeneration of spinocerebellar pathways with variable involvement of other neural systems. At present, 27 distinct genetic forms of SCAs are known: SCA1-8, SCA10-21, SCA23, SCA25-28, DRPLA (dentatorubral-pallidoluysian atrophy), and 16q-liked ADCA (autosomal dominant cerebellar ataxia). Epidemiological data about the prevalence of SCAs are restricted to a few studies of isolated geographical regions, and most do not reflect the real occurrence of the disease. In general a prevalence of about 0.3-2 cases per 100,000 people is assumed. As SCA are highly heterogeneous, the prevalence of specific subtypes varies between different ethnic and continental populations. Most recent data suggest that SCA3 is the commonest subtype worldwide; SCA1, SCA2, SCA6, SCA7, and SCA8 have a prevalence of over 2%, and the remaining SCAs are thought to be rare (prevalence <1%). In this review, we highlight and discuss the SCA7. The hallmark of SCA7 is the association of hereditary ataxia and visual loss caused by pigmentary macular degeneration. Visual failure is progressive, bilateral and symmetrical, and leads irreversibly to blindness. This association represents a distinct disease entity classified as autosomal dominant cerebellar ataxia (ADCA) type II by Harding. The disease affectsprimarily the cerebellum and the retina by the moderate to severe neuronal loss and gliosis, but also many other central nervous system structures as the disease progresses. SCA7 is caused by expansion of an unstable trinucleotide CAG repeat in the ATXN7 gene encoding a polyglutamine (polyQ) tract in the corresponding protein, ataxin-7. Normal ATXN7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36->450 CAG repeats. Immunoblott analysis demonstrated that ataxin-7 is widely expressed but that expression levels vary among tissues. Instability of expanded repeats is more pronounced in SCA7 than in other SCA subtypes and can cause substantial lowering of age at onset in successive generations termed ‘anticipation’ so that children may become diseased even before their parents develop symptoms. The strong anticipation in SCA7 and the rarity of contractions should have led to its extinction within a few generations. There is no specific drug therapy for this neurodegenerative disorder. Currently, therapy remains purely symptomatic. Cellular models and SCA7 transgenic mice have been generated which constitute valuable resources for studying the disease mechanism. Understanding the pathogenetic mechanisms of neurodegeneration in SCAs should lead to the identification of potential therapeutic targets and ultimately facilitate drug discovery. Here we summarize the clinical, pathological, and genetic aspects of SCA7, and review the current understanding of the pathogenesis of this disorder. Further, we also review the potential therapeutic strategies that are currently being explored in polyglutamine diseases.

  • PDF

Carbapenemase-Producing Klebsiella oxytoca Detection Using Molecular Methods (분자학적 방법을 이용한 Carbapenemase-Producing Klebsiella oxytoca 검출)

  • Yang, Byoung Seon;Park, Ji Ae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.428-435
    • /
    • 2019
  • The rapid increase and dissemination of carbapene mases, such as Klebsiella pneumoniae carbapenemase (KPC), has become a major problem within the field of healthcare-related infection. There are few antibiotics to treat carbapenem-resistant Enterobacteriaceae (CRE) infections, so the identification of resistant bacterial mechanisms is critical to initiate infection control and conduct epidemiological research. A rapid and effective method for detecting KPC-producing bacteria is needed to avoid therapeutic failures and introduce measures to prevent and control the dissemination of these multi-resistant bacteria. During the study period, 31 isolates (seven isolates of Acinetobacter spp., six isolates of Morganella morganii, five isolates of Pseudomonas aeruginosa, five isolates of Proteus mirabilis, one isolate of Proteus vulgaris, two isolates of Enterobacter cloacae, one isolate of Enterobacter aerogenes, one isolate of Klebsiella pneumoniae, one isolate of Klebsiella oxytoca, one isolate of Serratia marcescens and one isolate of Escherichia coli) were identified by the VITEK. Gram negative rod bacteria were the most frequently isolated from urine (35.5%), blood (19.4%), sputum (16.1%), pus (9.7%), ascitic fluid (9.7%), tracheal aspirates (6.5%) and bile juice (3.2%). Analysis using the PCR method identified the blaKPC gene in the K. oxytoca1 strain, but the blaIMP, blaVIM and blaOXA-48 genes are not amplified. In conclusion, diagnosis using the PCR method can accurately and quickly diagnose KPC, thus establishing quick preventive measures to prevent the spread of KPC in hospitals.

Identification of Korean Mountain Cultivated Ginseng by RAPD (RAPD(Random Amplified Polymorphic DNA)를 이용한 장뇌삼의 지역별 품종 구분)

  • Choi, Ji-Young;Lee, Ju-Hee;Lee, Su-Gwang;Kang, Ho-Duck
    • Journal of agriculture & life science
    • /
    • v.43 no.6
    • /
    • pp.35-43
    • /
    • 2009
  • This study was conducted to examine the genetic variations and intraspecific relationships between 9 individuals of Panax ginseng C.A Meyer by using RAPD (Randomly Amplified Polymorphic DNA) analysis. The 34 primers out of 40 random primers were amplified for all tested plants. The 48 (40%) among 244 bands derived from 34 primers shown polymorphism, and the 72 (64%) rest of bands showed similar forms. By regional groups Sangju and Andong samples located in Kyungsang buk-do showed a high similarity. However, Punggi located in Kyungsang buk-do showed higher similarity with Jinan's of Junla buk-do. In this way, it did not show that Panax ginseng from the same area has similarities. In future study we need to more specific molecular phylogenetic analysis such as AFLP technology and gene sequencing with nuclear chloroplast DNA in all samples.

Identification of copy number variations using high density whole-genome single nucleotide polymorphism markers in Chinese Dongxiang spotted pigs

  • Wang, Chengbin;Chen, Hao;Wang, Xiaopeng;Wu, Zhongping;Liu, Weiwei;Guo, Yuanmei;Ren, Jun;Ding, Nengshui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1809-1815
    • /
    • 2019
  • Objective: Copy number variations (CNVs) are a major source of genetic diversity complementary to single nucleotide polymorphism (SNP) in animals. The aim of the study was to perform a comprehensive genomic analysis of CNVs based on high density whole-genome SNP markers in Chinese Dongxiang spotted pigs. Methods: We used customized Affymetrix Axiom Pig1.4M array plates containing 1.4 million SNPs and the PennCNV algorithm to identify porcine CNVs on autosomes in Chinese Dongxiang spotted pigs. Then, the next generation sequence data was used to confirm the detected CNVs. Next, functional analysis was performed for gene contents in copy number variation regions (CNVRs). In addition, we compared the identified CNVRs with those reported ones and quantitative trait loci (QTL) in the pig QTL database. Results: We identified 871 putative CNVs belonging to 2,221 CNVRs on 17 autosomes. We further discarded CNVRs that were detected only in one individual, leaving us 166 CNVRs in total. The 166 CNVRs ranged from 2.89 kb to 617.53 kb with a mean value of 93.65 kb and a genome coverage of 15.55 Mb, corresponding to 0.58% of the pig genome. A total of 119 (71.69%) of the identified CNVRs were confirmed by next generation sequence data. Moreover, functional annotation showed that these CNVRs are involved in a variety of molecular functions. More than half (56.63%) of the CNVRs (n = 94) have been reported in previous studies, while 72 CNVRs are reported for the first time. In addition, 162 (97.59%) CNVRs were found to overlap with 2,765 previously reported QTLs affecting 378 phenotypic traits. Conclusion: The findings improve the catalog of pig CNVs and provide insights and novel molecular markers for further genetic analyses of Chinese indigenous pigs.

Identification and Chemical Control of Gray Snow Molds Caused by Typhula spp. on Golf Course in Korea (우리나라의 골프코스에서 Typhula spp.에 의해 발생하는 설부병의 동정 및 방제)

  • Kim, Jeong-Ho;Shim, Gyu-Yul;Lee, Hye-Min;Moon, Hyo-Sun;Kim, Young-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.147-154
    • /
    • 2007
  • In March of 2004, gray snow mold (Typhula blight) caused by Typhula spp. occurred on perennial ryegrass (Lolium perenne L.) and Kentucky bluegrass (Poo pratensis L.) at MuJu golf courses in Jeonbuk Province. Leaves in the affected areas were matted together and frequently covered with white to grayish mycelia. Sclerotia were formed on the leaf blade, leaf sheath, or crown regions. The fungus isolated from the diseased leaf formed whitish mycelium, clamp connections, and light pink to brown, irregular-shaped small sclerotia of less than 1.4 mm in diameter, which are characteristic to Typhula incarnata. Optimum temperature ranges for mycelial growth were $5^{\circ}C$ to $15^{\circ}C$. The causal organism was confirmed to be T. incarnata as the partial sequence of its ribosomal RNA ITS1 (internal transcribed spacer) region was 91% homologous to those of T. incarnata in GenBank database. Out of the 14 fungicides tested fur antifungal activity in vitro, 10 fungicides including iprodione, tebuconazole, polyoxin D, flutolanil, hexaconazole, tolclofos-methyl, fosetyl-Al, mepronil, pencycuron+tebuconazole, and fenarimol completely inhibited fungal growth at their recommended concentrations. In the field test, these fungicides and others such as thifluzamide and thiram effectively controlled the gray snow mold of turfgrass with some variable degrees of control efficacies.

Sampling and Extraction Method for Environmental DNA (eDNA) in Freshwater Ecosystems (수생태계의 환경유전자(environmental DNA: eDNA) 채집 및 추출기술)

  • Kim, Keonhee;Ryu, Jeha;Hwang, Soon-jin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.170-189
    • /
    • 2021
  • Environmental DNA (eDNA) is a genetic material derived from organisms in various environments (water, soil, and air). eDNA has many advantages, such as high sensitivity, short investigation time, investigation safety, and accurate species identification. For this reason, it is used in various fields, such as biological monitoring and searching for harmful and endangered organisms. To collect eDNA from a freshwater ecosystem, it is necessary to consider the target organism and gene and a wide variety of items, such as on-site filtration and eDNA preservation methods. In particular, the method of collecting eDNA from the environment is directly related to the eDNA concentration, and when collecting eDNA using an appropriate collection method, accurate (good quality) analysis results can be obtained. In addition, in preserving and extracting eDNA collected from the freshwater ecosystem, when an accurate method is used, the concentration of eDNA distributed in the field can be accurately analyzed. Therefore, for researchers at the initial stage of eDNA research, the eDNA technology poses a difficult barrier to overcome. Thus, basic knowledge of eDNA surveys is necessary. In this study, we introduced sampling of eDNA and transport of sampled eDNA in aquatic ecosystems and extraction methods for eDNA in the laboratory. In addition, we introduced simpler and more efficient eDNA collection tools. On this basis, we hope that the eDNA technique could be more widely used to study aquatic ecosystems and help researchers who are starting to use the eDNA technique.

Isolation and identification of goose skeletal muscle satellite cells and preliminary study on the function of C1q and tumor necrosis factor-related protein 3 gene

  • Wang, Han;He, Ke;Zeng, Xuehua;Zhou, Xiaolong;Yan, Feifei;Yang, Songbai;Zhao, Ayong
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1078-1087
    • /
    • 2021
  • Objective: Skeletal muscle satellite cells (SMSCs) are significant for the growth, regeneration, and maintenance of skeletal muscle after birth. However, currently, few studies have been performed on the isolation, culture and inducing differentiation of goose muscle satellite cells. Previous studies have shown that C1q and tumor necrosis factor-related protein 3 (CTRP3) participated in the process of muscle growth and development, but its role in the goose skeletal muscle development is not yet clear. This study aimed to isolate, culture, and identify the goose SMSCs in vitro. Additionally, to explore the function of CTRP3 in goose SMSCs. Methods: Goose SMSCs were isolated using 0.25% trypsin from leg muscle (LM) of 15 to 20 day fertilized goose eggs. Cell differentiation was induced by transferring the cells to differentiation medium with 2% horse serum and 1% penicillin streptomycin. Immunofluorescence staining of Desmin and Pax7 was used to identify goose SMSCs. Quantitative realtime polymerase chain reaction and western blot were applied to explore developmental expression profile of CTRP3 in LM and the regulation of CTRP3 on myosin heavy chains (MyHC), myogenin (MyoG) expression and Notch signaling pathway related genes expression. Results: The goose SMSCs were successfully isolated and cultured. The expression of Pax7 and Desmin were observed in the isolated cells. The expression of CTRP3 decreased significantly during leg muscle development. Overexpression of CTRP3 could enhance the expression of two myogenic differentiation marker genes, MyHC and MyoG. But knockdown of CTRP3 suppressed their expression. Furthermore, CTRP3 could repress the mRNA level of Notch signaling pathway-related genes, notch receptor 1, notch receptor 2 and hairy/enhancer-of-split related with YRPW motif 1, which previously showed a negative regulation in myoblast differentiation. Conclusion: These findings provide a useful cell model for the future research on goose muscle development and suggest that CTRP3 may play an essential role in skeletal muscle growth of goose.

Variable Selection of Feature Pattern using SVM-based Criterion with Q-Learning in Reinforcement Learning (SVM-기반 제약 조건과 강화학습의 Q-learning을 이용한 변별력이 확실한 특징 패턴 선택)

  • Kim, Chayoung
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.21-27
    • /
    • 2019
  • Selection of feature pattern gathered from the observation of the RNA sequencing data (RNA-seq) are not all equally informative for identification of differential expressions: some of them may be noisy, correlated or irrelevant because of redundancy in Big-Data sets. Variable selection of feature pattern aims at differential expressed gene set that is significantly relevant for a special task. This issues are complex and important in many domains, for example. In terms of a computational research field of machine learning, selection of feature pattern has been studied such as Random Forest, K-Nearest and Support Vector Machine (SVM). One of most the well-known machine learning algorithms is SVM, which is classical as well as original. The one of a member of SVM-criterion is Support Vector Machine-Recursive Feature Elimination (SVM-RFE), which have been utilized in our research work. We propose a novel algorithm of the SVM-RFE with Q-learning in reinforcement learning for better variable selection of feature pattern. By comparing our proposed algorithm with the well-known SVM-RFE combining Welch' T in published data, our result can show that the criterion from weight vector of SVM-RFE enhanced by Q-learning has been improved by an off-policy by a more exploratory scheme of Q-learning.

Single Nucleotide Polymorphism (SNP) Discovery and Kompetitive Allele-Specific PCR (KASP) Marker Development with Korean Japonica Rice Varieties

  • Cheon, Kyeong-Seong;Baek, Jeongho;Cho, Young-il;Jeong, Young-Min;Lee, Youn-Young;Oh, Jun;Won, Yong Jae;Kang, Do-Yu;Oh, Hyoja;Kim, Song Lim;Choi, Inchan;Yoon, In Sun;Kim, Kyung-Hwan;Han, Jung-Heon;Ji, Hyeonso
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.391-403
    • /
    • 2018
  • Genome resequencing by next-generation sequencing technology can reveal numerous single nucleotide polymorphisms (SNPs) within a closely-related cultivar group, which would enable the development of sufficient SNP markers for mapping and the identification of useful genes present in the cultivar group. We analyzed genome sequence data from 13 Korean japonica rice varieties and discovered 740,566 SNPs. The SNPs were distributed at 100-kbp intervals throughout the rice genome, although the SNP density was uneven among the chromosomes. Of the 740,566 SNPs, 1,014 SNP sites were selected on the basis of polymorphism information content (PIC) value higher than 0.4 per 200-kbp interval, and 506 of these SNPs were converted to Kompetitive Allele-Specific PCR (KASP) markers. The 506 KASP markers were tested for genotyping with the 13 sequenced Korean japonica rice varieties, and polymorphisms were detected in 400 KASP markers (79.1%) which would be suitable for genetic analysis and molecular breeding. Additionally, a genetic map comprising 205 KASP markers was successfully constructed with 188 $F_2$ progenies derived from a cross between the varieties, Junam and Nampyeong. In a phylogenetic analysis with 81 KASP markers, 13 Korean japonica varieties showed close genetic relationships and were divided into three groups. More KASP markers are being developed and these markers will be utilized in gene mapping, quantitative trait locus (QTL) analysis, marker-assisted selection and other strategies relevant to crop improvement.

Isolation and Identification of Ampicillin-resistant Bacteria in Changwon (창원근교에서의 ampicillin 내성세균의 분리 및 동정)

  • Bae, Young-Min
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1529-1535
    • /
    • 2018
  • The number of antibiotic-resistant bacteria is increasing rapidly while the discovery rate of new antibiotics is in decline. A systematic study is therefore necessary to investigate which bacteria are resistant to medically important antibiotics and how high that resistance is. To that end, this study aimed to analyze which bacteria demonstrated resistance to ampicillin, one of the currently most-widely used medical antibiotics. Water samples were collected from the Changwon-Cheon that runs through Changwon City and from the pond in front of the dormitory building at Changwon University. Hundreds of ampicillin-resistant colonies were obtained and 22 morphologically distinct examples were chosen for further study. These bacteria were identified by amplifying their 16S rRNA genes and comparing those sequences with data in GenBank. The bacteria was identified as belonging to 10 families, 12 genera, and 17 species, and all were able to grow in the presence of $50{\mu}g/ml$ ampicillin while seven showed growth at ampicillin concentrations as high as 1.5 mg/ml.