• Title/Summary/Keyword: Gene Cloning

Search Result 1,589, Processing Time 0.024 seconds

Cloning, Expression, and Purification of Exoinulinase from Bacillus sp. snu-7

  • Kim, Kyoung-Yun;Koo, Bong-Seong;Jo, Do-Hyun;Kim, Su-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.344-349
    • /
    • 2004
  • A gene encoding inulin-degrading enzyme of Bacillus sp. snu-7 with ORF of 1536 nucleotides was cloned. And it was overexpressed as His-tagged protein in E. coli BL21(DE3) pLysS using pRSET B vector containing mature enzyme sequence. Maximum enzyme production was achieved by IPTG (0.1 mM) induction at $OD_{600}$ 1.2 and $30^{\circ}C$ followed by 6 h incubation. The expressed protein purified through immobilized metal affinity chromatography showed molecular mass of 60 kDa on SDS-PAGE. Results of thin-layer chromatography using inulin as a substrate showed the enzyme to be an exotype inulinase capable of producing only monomeric fructose as a product. $K_m$ and $k_{cat}$, for the hydrolyses of inulin and sucrose were $2.28\pm0.08$ mM and 358.05$\pm$20.38 $min^{-l}$, and 22.02$\pm$0.41 mM and 4619.11$\pm$215.12 $$min^{-1}, respectively. Optimal activity of the exoinulinase occurred at pH 7.0 and $50^{\circ}C$.

Cloning, Expression, and Characterization of Para-Aminobenzoic Acid (PABA) Synthase from Agaricus bisporus 02, a Thermotolerant Mushroom Strain

  • Deng, Li-Xin;Shen, Yue-Mao;Song, Si-Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.66-73
    • /
    • 2015
  • The pabS gene of Agaricus bisporus 02 encoding a putative PABA synthase was cloned, and then the recombinant protein was expressed in Escherichia coli BL21 under the control of the T7 promoter. The enzyme with an N-terminal GST tag or His tag, designated GST-AbADCS or His-AbADCS, was purified with glutathione Sepharose 4B or Ni Sepharose 6 Fast Flow. The enzyme was an aminodeoxychorismate synthase, and it was necessary to add with an aminodeoxychorismate lyase for synthesizing PABA. AbADCS has maximum activity at a temperature of approximately 25℃ and pH 8.0. Magnesium or manganese ions were necessary for the enzymatic activity. The Michaelis-Menten constant for chorismate was 0.12 mM, and 2.55 mM for glutamine. H2O2 did distinct damage on the activity of the enzyme, which could be slightly recovered by Hsp20. Sulfydryl reagents could remarkably promote its activity, suggesting that cysteine residues are essential for catalytic function.

Molecular Cloning and Characterization of Maltooligosyltrehalose Synthase Gene from Nostoc flagelliforme

  • Wu, Shuangxiu;Shen, Rongrong;Zhang, Xiu;Wang, Quanxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.579-586
    • /
    • 2010
  • A genomic DNA fragment encoding a putative maltooligosyltrehalose synthase (NfMTS) for trehalose biosynthesis was cloned by the degenerate primer-PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTS was 2,799 bp in length and encoded 933 amino acid residues constituting a 106.6 kDa protein. The deduced amino acid sequence of NfMTS contained 4 regions highly conserved for MTSs. By expression of NfMTS in E. coli, it was demonstrated that the recombinant protein catalyzed the conversion of maltohexaose to maltooligosyl trehalose. The $K_m$ of the recombinant enzyme for maltohexaose was 1.87 mM and the optimal temperature and pH of the recombinant enzyme was at $50^{\circ}C$ and 7.0, respectively. The expression of MTS of N. flagelliforme was upregulated, and both trehalose and sucrose contents increased significantly in N. flagelliforme during drought stress. However, trehalose accumulated in small quantities (about 0.36 mg/g DW), whereas sucrose accumulated in high quantities (about 0.90 mg/g DW), indicating both trehalose and sucrose were involved in dehydration stress response in N. flagelliforme and sucrose might act as a chemical chaperone rather than trehalose did during dehydration stress.

Effects of camptothecin on the expression of DNA topoisomerase I and c-myc in HL-60 human leukemia cells (HL-60 사람 백혈병 세포에서 camptothecin이 DNA topoisomerase l과 c-myc의 발현에 미치는 영향)

  • 정인철;정대성;류경자;박장수;조무연
    • Journal of Life Science
    • /
    • v.10 no.6
    • /
    • pp.621-629
    • /
    • 2000
  • Camptothecin (CPT) is an antitumor alkaloid that has been isolated from the Chinese tree, Camptotheca acuminata. The cytotoxicity of CPT has been correlated to its inhibition of DNA topoisomerase (Topo) I by stabilizing drug-enzyme-DNA “cleavable complex" resulting in DNA single-strand breaks and DNA-protein crosslinks. This studies were designed to elucidate whether CPT regulates Topo I mediated by CPT in DNAs containing c-myc protooncogene. We have conducted experiments on Topo I purification, pUC-MYC I cloning and Topo I assay using electrophoresis, quantitative RT-PCR and Northern blotting techniques. CPT ingibited the relaxation activity of Topo I in pUC19 DNA at various concentrations (1-1000 $\mu$M), while it enhanced the cleavage of Topo I in the pUC-MYC I by forming a cleavable complex at relatively high concentrations (100-1000 $\mu$M). In HL-60 cells treated with CPT, the expression of c-myc gene was decreased over that in the control group with no changes in the expression of Topo I mRNA. Our results suggest that Topo I is the target of CPT cytotoxicity but it does not affect Topo I extression, and the suppression of c-myc mRNA expression by CPT is due to c-myc damage resulted from formation of a cleavable complex with CPT. CPT.

  • PDF

Molecular cloning and characterization of a soybean GmMBY184 induced by abiotic stresses

  • Chung, Eun-Sook;Kim, Koung-Mee;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • Drought and high salinity stresses often imposes adverse effects on crop yield. MYB transcription factors have been shown to be an important regulator in defense responses to these environmental stresses. In this study, we have cloned and characterized a soybean gene GmMYB184 (Glycine max MYB transcription factor 184). Deduced amino acid sequences of GmMYB184 show highest homology with that from Vitis vinifera legume plant (75%). Different expression patterns of GmMYB184 mRNA were observed subjected to drought, cold, high salinity stress and abscisic acid treatment, suggesting its role in the signaling events in the osmotic stress-related defense response. Subcellular localization studies demonstrated that the GFP-GmMYB184 fusion protein was localized in the nucleus. Using the yeast assay system, the C-terminal region of GmMYB184 was found to be essential for the transactivation activity. These results indicate that the GmMYB184 may play a role in abiotic stress tolerance in plant.

Molecular Characterization of Porcine DNA Methyltransferase I

  • Lee, Yu-Youn;Kang, Hye-Young;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.34 no.4
    • /
    • pp.283-288
    • /
    • 2010
  • During normal early embryonic development in mammals, the global pattern of genomic DNA methylation undergoes marked. changes. The level of methylation is high in male and female gametes. Thus, we cloned the cDNA of the porcine DNA methyltransferase 1 (Dnmt1) gene to promote the efficiency of the generation of porcine clones. In this study, porcine Dnmt1 cDNA was sequenced, and Dnmt1 mRNA expression was detected by reverse transcription-polymerase reaction (RT-PCR) in porcine tissues during embryonic development. The porcine Dnmt1 cDNA sequence showed more homology with that of bovine than human, mouse, and rat. The complete sequence of porcine Dnmt1 cDNA was 4,774-bp long and consisted of an open reading frame encoding a protein of 1611 amino acids. The amino acid sequence of porcine DNMT1 showed significant homology with those of bovine (91%), human (88%), rat (76%), and mouse (75%) Dnmt1. The expression of porcine Dnmt1 mRNA was detected during porcine embryogenesis. The mRNA was detected at stages of porcine preimplantation development (1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages). It was also abundantly expressed in tissues (lung, ovary, kidney and somatic cells). Further investigations are necessary to understand the complex links between methyltransferase 1 and the transcriptional activity in cloned porcine tissues.

Functional Analysis of the Tomato Spotted Wilt Virus(TSWV) NSm Protein by Using Immunoblotting and Immunogold Labelling Assay

  • Choi, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.468-473
    • /
    • 1996
  • The genome of tomato spotted wilt virus (TSWV) is composed of three RNA segments, S, M, and L RNA and the 5.0 kb M RNA encodes two glycoproteins Gl, G2 and NSm protein of unknown function. In an effort to investigate the function of the NSm protein, antibody was raised against NSm fusion protein overexpressed in Escherichia coli. This antibody was used to detect the NSm protein by using western blot analysis and electron microscopic observation after immunogold labelling. For the cloning of the NSm gene, total RNA extracted from a TSWV infected plant was used for cDNA synthesis and polymerase chain reaction (PCR) instead of going through time-consuming virus purification. A protein band specifically reacting to the NSm antibody was detected from TSWV inoculated plants. The NSm protein was detected in the cell wall fraction and in pellet from low speed centrifugation when the infected plant tissue was fractionated into 4 fractions. In the immuno-electron microscopic observation, gold particles were found around the plasmodesmata of infected plant tissue. These results suggest that the NSm protein of TSWV plays some role in cell-to-cell movement of this virus.

  • PDF

Optimized Recombinant DNA for the Secretion of Pediocin PA-1 in Escherichia coli

  • Moon, Gi-Seong
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.360-363
    • /
    • 2010
  • To enhance the expression and secretion of pediocin PA-1 from heterologous bacterial hosts, the promoter and deduced signal sequence (PS) of an $\alpha$-amylase gene from a Bifidobacterium adolescentis strain was fused with pediocin PA-1 structural and immunity genes (AB) and the resulting functions were evaluated in Escherichia coli. Two recombinant PCR products were created-one with just the deduced signal sequence and one with the sequence plus the Ser and Thr sequences that are the next two amino acids of the signal sequence. These two products, the PSAB (---AQA::KYY---) and PSABST (---AQA$\underline{ST}$::KYY---), respectively, were inserted into a TA cloning vector (yT&A) and named pPSAB, which was previously reported, and pPSABST. The two recombinant plasmid DNAs were transferred into E. coli JM109 and the transformants displayed antimicrobial activity, where the activity of E. coli JM109 (pPSAB) was stronger than that of E. coli JM109 (pPSABST), indicating that the ST amino acid residues were not necessary for secretion and might have even decreased the antimicrobial activity of recombinant pediocin PA-1.

Molecular Cloning and Characterization of Bacillus cereus O-Methyltransferase

  • Lee Hyo-Jung;Kim Bong-Gyu;Ahn Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.619-622
    • /
    • 2006
  • Biotransformation is a good tool to synthesize regioselective compounds. It could be performed with diverse sources of genes, and microorganisms provide a myriad of gene sources for biotransformation. We were interested in modification of flavonoids, and therefore, we cloned a putative O-methyltransferase from Bacillus cereus, BcOMT-2. It has a 668-bp open reading frame that encodes a 24.6-kDa protein. In order to investigate the modification reaction mediated by BcOMT-2, it was expressed in E. coli as a His-tag fusion protein and purified to homogeneity. Several substrates such as naringenin, luteolin, kaempferol, and quercetin were tested and reaction products were analyzed by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). BcOMT-2 could transfer a methyl group to substrates that have a 3' functional hydroxyl group, such as luteolin and quercetin. Comparison of the HPLC retention time and UV spectrum of the quercetin reaction product with corresponding authentic 3'-methylated and 4'-methylated compounds showed that the methylation position was at either the 3'-hydroxyl or 4'-hydroxyl group. Thus, BcOMT-2 transfers a methyl group either to the 3'-hydroxyl or 4'-hydroxyl group of flavonoids when both hydroxyl groups are available. Among several flavonoids that contain a 3'- and 4'-hydroxyl group, fisetin was the best substrate for the BcOMT-2.

Purification and Characterization of Recombinant Hepatitis C Virus Replicase

  • Park, Chan-Hee;Kee, Young-Hoon;Lee, Jong-Ho;Oh, Jang-Hyun;Park, Jung-Chan;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.881-884
    • /
    • 1999
  • The gene encoding the RNA-dependent RNA polymerase of the hepatitis C virus was cloned and expressed with a C-terminal hexahistidine tag. The protein was purified from Escherichia coli to near homogeneity and characterized in vitro. When the 21 amino acids from the C-terminus of the protein were deleted, an inclusion body was not formed and a better purification yield was achieved. However, the activity of the purified enzyme decreased compared to that of the full length protein. The purified enzyme did exhibit ribonucleotide-incorporation activity on an in vitro transcribed RNA containing the 3' end of the HCV genome. It also possessed ribonucleotide incorporation activity, to a lesser extent, on in vitro transcribed foreign RNA templates when RNA or DNA primers were present. The activity was higher with DNA primers than with RNA primers. Accordingly, this assay system will facilitate the screening of inhibitors for hepatitis C virus replication.

  • PDF