• Title/Summary/Keyword: Gelled propellant

Search Result 7, Processing Time 0.075 seconds

Technical Review of Slurry and Gelled Propellant (슬러리와 젤 추진제의 기술개발 동향)

  • Jeong, Byung-Hun;Ko, Seung-Won;Hwang, Kab-Sung;Han, Jeong-Sik;Hong, Myung-Pyo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.168-171
    • /
    • 2007
  • A technical review of current slurry and gelled propellants is presented. In advanced countries, it is confirmed that these propellants have high specific impulse, density, excellent handling, safety characteristics and thrust controllability through research since 1950s. Substantial researches have been pursued to characterize the rheological properties, spray/combustion phenomena and propulsion system design for the gel propellant characteristics. Slurry and gelled propellants are developing actively to applicate both military and space propulsion fields such as tactical missile, air-breathing ramjet, pulse detonation engine, and combined cycle engine of future propulsion mode.

  • PDF

Breakup Process and Wave Development Characteristics of Gel Propellant Simulants at Various Gelling Agent Contents (젤 모사 추진제의 점도 변화에 따른 분무 분열 및 파장 변화 특성)

  • Hwang, Tae-Jin;Lee, In-Chul;Kim, Jung-Hun;Kim, Do-Hun;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.140-145
    • /
    • 2011
  • Gelled propellants are non-Newtonian fluids in which the viscosity is a function of the shear rate, and they have a high dynamic shear viscosity which depends on the amount of gelling agent contents. The present study has focused on the breakup process, wave development of ligament and liquid sheets formed by impinging jets with various gelling agent contents. The breakup process of like-on-like doublet impinging jets are experimentally characterized using non-Newtonian liquids. The spray shape with elliptical pattern is distributed in a perpendicular direction to the momentum vectors of the jets. Gelled propellant simulants with high viscosity jets are more stable and produce less pronounced surface waves than low viscosity jets. Gelled propellant simulants from like-on-like doublet impinging jets have the spray shape of closed rim patterns at low pressure. As the injection pressure increased, rimless patterns which were composed of ligament sheets and small droplets emerged due to the effect of the aerodynamic action.

Experimental Investigation on Combustion Characteristics of Liquid Kerosene and Gelled Kerosene Using Shear Coaxial Injector (전단동축인젝터를 이용한 액상 케로신 및 젤 케로신의 연소특성에 대한 실험적 연구)

  • Han, Seongjoo;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.1-11
    • /
    • 2020
  • In this study, a hot-firing test of a lab-scale gel rocket motor using liquid kerosene and gelled kerosene as fuel was performed in order to analyze the discrepancy of the static and dynamic pressure between the two fuels. The static pressure, characteristic velocity, and characteristic velocity efficiency of the liquid kerosene and gelled kerosene did not show any significant difference. However, in the case of dynamic pressure characteristics, the pressure oscillation amplitude in a specific high frequency region of the gelled kerosene demonstrated a significantly higher amplitude than liquid kerosene case. This is considered to be the effect of an intrinsic combustion mechanism of the gel propellant, and it can be postulated that this may act as a dominant factor influencing the high frequency combustion instability of the gel rocket motor.

Research Trends of Spray and Combustion Characteristics Using a Gelled Propellant (젤 추진제의 분무 및 연소특성 연구동향)

  • Hwang, Tae-Jin;Lee, In-Chul;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.96-106
    • /
    • 2011
  • There are many advantages in applying gel propellant to a gel propulsion system. These include higher performances, the energy management of liquid propulsion system, reliable storability and low leakage characteristics. Additionally, gel propulsion system are preferable to the high density impulse of propulsion system. Also, when compared to liquid propellants, the gel propellants acquire greater heat energy. Gel propellants achieve a high specific impulse when metal particles with aluminum and boron are added. With respect to atomization, an inactive process occurs due to the variable viscosity of the metal particles and gelling agents. To improve the defect of atomization and combustion characteristics of gel propellant, a variety of issues related to spray and combustion is introduced here.

Spray Image of Gelled Kerosene with Nanoparticles at Multi-hole Pintle Injector (미세입자를 첨가한 케로신 젤 추진제의 멀티 홀 핀틀 인젝터에서의 분무 이미지)

  • Hwang, Juhyun;Choi, Myeunghwan;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.73-79
    • /
    • 2021
  • This study was carried out to analyze the properties of the gel propellant and spray characteristics according to the addition of fine particles. The multi-hole diameter was 0.4 mm to induce a high shear rate, and a kerosene gel propellant was prepared using 5 wt% of the Thixatrol ST and SUS304 of 100 nm. The experiment was conducted by fixing the supply pressure in the axial direction to 0.7 MPa and adjusting the supply pressure in the radial direction from 0.7 MPa to 2.1 MPa. Due to the addition of fine particles, pressure vibration during spraying, a small TMR(Total Momentum Ratio) of up to 0.19, and a phenomenon that the spraying angle rapidly increased to more than 70 degrees occurred.

Rheological Characterization of Hydrogen Peroxide Gel Propellant

  • Jyoti, B.V.S.;Baek, Seung Wook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.199-204
    • /
    • 2014
  • An experimental investigation on the rheological behavior of gelled hydrogen peroxide at different ambient temperature (283.15, 293.15 and 303.15 K) was carried out in this study. The gel propellant was rheologically characterized using a rheometer, in the shear rate ranges of 1 to $20s^{-1}$, and 1 to $1000s^{-1}$. Hydrogen peroxide gel was found to be thixotropic in nature. The apparent viscosity value with some yield stress (in-case of shear rate 1 to $20s^{-1}$) drastically fell with the shear rate. In the case of the shear rate range of 1 to $20s^{-1}$, the apparent viscosity and yield stress of gel were significantly reduced at higher ambient temperatures. In the case of the shear rate range of 1 to $1000s^{-1}$, no significant effect of varying the ambient temperature on the gel apparent viscosity was observed. The up and down shear rate curves for hydrogen peroxide gel formed a hysteresis loop that showed no significant change with variation in temperature for both the 1 to $20s^{-1}$ and the 1 to $1000s^{-1}$ shear rate ranges. No significant change in the thixotropic index of gel was observed for different ambient temperatures, for both low and high shear rates. The gel in the 1 to $20s^{-1}$ shear rate range did not lead to a complete breakdown of gel structure, in comparison to that in the 1 to $1000s^{-1}$ shear rate range.

Spray Characteristics of Water-Gel Propellant by Impinging Injector (Water-Gel 모사 추진제의 충돌 분무 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Kim, Sang-Sun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.11-14
    • /
    • 2009
  • The implementation of gelled propellants systems offers high performance, thrust-control, energy management of propulsion, storability, and high density impulse of solid propulsion. Present study focused on the spray behavior of liquid sheets formed by impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are then compared with experiments conducted on spray images formed by impinging jets concerning with air-blast effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure, closed rim pattern shape appeared. As increasing air mass flow rate(decreasing GLR), spray breakup and atomization phenomenon better improved and spray structure instabilities for the effect of air-blast are also increased.

  • PDF