• Title/Summary/Keyword: Gellan gum

Search Result 44, Processing Time 0.027 seconds

Effects of Food Polysaccharides and Seaweed Calcium on the Physicochemical Properties of Prickly Pear Extract Fermented by Lactobacillus rhamnosus LS

  • Son, Min-Jeong;Kwon, Oh-Sik;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.206-212
    • /
    • 2004
  • Prickly pear extract (PPE) was fermented by Lactobacillus rhamnosus LS at 3$0^{\circ}C$ for 2 days. To improve the physicochemical properties of fermented PPE, it was fortified with food polysaccharides (0.2 %) or seaweed calcium before lactic acid fermentation. The viable cell counts, flow behavior, titratable acidity and color stability of fermented PPE were evaluated during 4 weeks of cold storage. Addition of xanthan gum or glucomannan increased the apparent viscosity and acid production, viable cell counts and red color of PPE were also well maintained during the cold storage. However, fermenting PPE with gellan gum resulted in a decrease in relative absorbance, indicating lower color stability. In particular, PPE fortified with carrageenan or alginic acid showed reduced acid production and lower viable cell counts. Addition of seaweed calcium at a 0.1 % level had positive effects on color stability, and helped maintain viable cell counts of 4.1 ${\times}$ 10$^{9}$ CFU/mL. This study demonstrated that xanthan gum could be used as a good thickening agent and stabilizer for retaining viable cell counts and red color during the cold storage in PPE fermented by lactic acid bacteria.

Investigation on the Key Parameters for the Strengthening Behavior of Biopolymer-based Soil Treatment (BPST) Technology (바이오폴리머-흙 처리(BPST) 기술의 강도 발현 거동에 대한 주요 영향인자 분석에 관한 연구)

  • Lee, Hae-Jin;Cho, Gye-Chum;Chang, Ilhan
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.109-119
    • /
    • 2021
  • Global warming caused by greenhouse gas emissions has rapidly increased abnormal climate events and geotechnical engineering hazards in terms of their size and frequency accordingly. Biopolymer-based soil treatment (BPST) in geotechnical engineering has been implemented in recent years as an alternative to reducing carbon footprint. Furthermore, thermo-gelating biopolymers, including agar gum, gellan gum, and xanthan gum, are known to strengthen soils noticeably. However, an explicitly detailed evaluation of the correlation between the factors, that have a significant influence on the strengthening behavior of BPST, has not been explored yet. In this study, machine learning regression analysis was performed using the UCS (unconfined compressive strength) data for BPST tested in the laboratory to evaluate the factors influencing the strengthening behavior of gellan gum-treated soil mixtures. General linear regression, Ridge, and Lasso were used as linear regression methods; the key factors influencing the behavior of BPST were determined by RMSE (root mean squared error) and regression coefficient values. The results of the analysis showed that the concentration of biopolymer and the content of clay have the most significant influence on the strength of BPST.

Utilization of carrageenan as an alternative eco-biopolymer for improving the strength of liquefiable soil

  • Regina A. Zulfikar;Hideaki Yasuhara;Naoki Kinoshita;Heriansyah Putra
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.221-230
    • /
    • 2023
  • The liquefaction of soil occurs when a soil loses strength and stiffness because of applied stress, such as an earthquake or other changes in stress conditions that result in a loss of cohesion. Hence, a method for improving the strength of liquefiable soil needs to be developed. Many techniques have been presented for their possible applications to mitigate liquefiable soil. Recently, alternative methods using biopolymers (such as xanthan gum, guar gum, and gellan gum), nontraditional additives, have been introduced to stabilize fine-grained soils. However, no studies have been done on the use of carrageenan as a biopolymer for soil improvement. Due to of its rheological and chemical structure, carrageenan may have the potential for use as a biopolymer for soil improvement. This research aims to investigate the effect of adding carrageenan on the soil strength of treated liquefiable soil. The biopolymers used for comparison are carrageenan (as a novel biopolymer), xanthan gum, and guar gum. Then, sand samples were made in cylindrical molds (5 cm × 10 cm) by the dry mixing method. The amount of each biopolymer was 1%, 3%, and 5% of the total sample volume with a moisture content of 20%, and the samples were cured for seven days. In terms of observing the effect of temperature on the carrageenan-treated soil, several samples were prepared with dry sand that was heated in an oven at various temperatures (i.e., 20℃ to 75℃) before mixing. The samples were tested with the direct shear test, UCS test, and SEM test. It can increase the cohesion value of liquefiable soil by 22% to 60% compared to untreated soil. It also made the characteristics of the liquefiable increase by 60% to 92% from very loose sandy soil (i.e., ϕ=29°) to very dense sandy soil. Carrageenan was also shown to have a significant effect on the compressive strength and to exceed the liquefaction limit. Based on the results, carrageenan was found to have the potential for use as an alternative biopolymer.

Effects of Various Polysaccharides on the Physicochemical Properties of the Dextran Culture Containing Carrot Juice Residue Obtained from Submerged Culture Using Leuconostoc citreum S5 (다당류 첨가에 따른 당근박 함유 Leuconostoc citreum S5 발효물의 물성변화)

  • Son, Min-Jung;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.352-358
    • /
    • 2009
  • The physicochemical properties of dextran culture fermented by Leuconostoc citreum S5 were evaluated by the addition of various polysaccharides and heat-treatment. The consistency of dextran culture increased with the addition of carrot juice residue (CJR) in submerged culture, resulting in the highest consistency of 150 $Pa{\cdot}s^n$ and viable cell counts of $2.36{\times}10^9$ CFU/mL at 20% level of CJR. The dextran culture showed the pseudoplastic behavior and its consistency was greatly increased with the addition of various polysaccharides at 2% level. Addition of glucomannan indicated the highest consistency of 1275 $Pa{\cdot}s^n$ and their heat-treatment resulted in the increase of consistency except for glucomannan. After heat-treatment, the fermented dextran culture containing CJR fortified with gellan gum and carrageenan showed great change in rheology, indicating the highest consistency and hardness value resulted in the great increase of elastic and viscous moduli. The dynamic viscoelastic properties of dextran culture were greatly increased by the heat-treatment after fortification of various polysaccharides. Thus, the consistency and viable cell counts of dextran culture were increased with the addition of CJR. The rheological properties of dextran culture were manipulated by the fortification of various polysaccharides and heat-treatment.

Low-Temperature Microencapsulation of Sesame Oil Using Fluidized Bed Granulation (Fluidized bed granulation을 이용한 참기름의 저온 미세캡슐화)

  • Jeong, Chan-Min;Lee, Min-Kyung;Lee, Hyun-Ah;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.27-31
    • /
    • 2009
  • Top spray-drying method is frequently utilized for flavor encapsulation, but the top spray-dried products frequently suffer from high losses of volatile flavor as the result of a high processing temperature (150-$300^{\circ}C$). In an effort to solve these problems, a low-temperature fluidized-bed granulating method was utilized to encapsulate the flavor. For the encapsulation of sesame oil, oil-in-water emulsions of sesame oil and a mixture of maltodextrin, modified starch, gum arabic, and gellan gum were bottom-sprayed at milder temperatures (70-$100^{\circ}C$) using a fluidized-bed granulator. Sesame oil extracts from microcapsules were obtained via a simultaneous distillation/extraction technique, and the retention of volatile flavor compounds was analyzed via a gas chromatography-mass spectrometry. The retention of volatile flavors of sesame oil per se, spray-dried and fluidized-bed granulated microcapsules after 3-day-storage at $37^{\circ}C$ were 0.8%, 37.2%, and 42.0%, respectively. In addition, the low-temperature fluidized-bed granulation showed higher encapsulation yield and sensory preferences for the application of commercial products (beef rice porridge), as compared to spray drying.

Microencapsulation of Lactobacillus plantarum DKL 109 using External Ionic Gelation Method

  • Chun, Honam;Kim, Cheol-Hyun;Cho, Young-Hee
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.692-699
    • /
    • 2014
  • The aim of this study was to apply the external ionic gelation using an atomizing spray device comprised of a spray gun to improve the viability of Lactobacillus plantarum DKL 109 and for its commercial use. Three coating material formulas were used to microencapsulate L. plantarum DKL 109: 2% alginate (Al), 1% alginate/1% gellan gum (Al-GG), and 1.5% alginate/3% gum arabic (Al-GA). Particle size of microcapsules was ranged from 18.2 to $23.01{\mu}m$ depending on the coating materials. Al-GA microcapsules showed the highest microencapsulation yield (98.11%) and resulted in a significant increase in survivability of probiotic in a high acid and bile environment. Encapsulation also improved the storage stability of cells. The viability of encapsulated cells remained constant after 1-mon storage at ambient temperature. The external ionic gelation method using an atomizing spray device and the Al-GA seems to be an efficient encapsulation technology for protecting probiotics in terms of scale-up potential and small microcapsule size.

발효를 통한 적절한 소재(ingredient) 개발

  • Gu, Gyeong-Hyeong
    • Bulletin of Food Technology
    • /
    • v.15 no.3
    • /
    • pp.112-124
    • /
    • 2002
  • 발효란"박테리아,곰팡이,효모의 효소에 의해 일어나는 계속적인 변화"로 규정한다. 발효에 의해 일어나는 화학적 변화의 예를 들면 우유의 acidulation. 전분의 분해.설탕이 알콜과 이산화탄소로 변화되는 것과 질소 유기화합물의 산화등이 있다. 배지, 온도, 소금, 산도 배양 용기 및 시간과 같은 몇몇 요인이 발효 과정에 중요한 역할을 한다. 사실 발효식품 제조에 있어서 제품의 향미,텍스쳐,아로마 기타 다른 요소들이 어느 정도의 발효시간에 따라 차이가 있기때문에 단순히 급하게 서두를 수도 없다. 빵, 맥주, 사이다, 와인, 치이즈와 요구르트류의 식품과 음료는 발효과정을 통해 만들어진다. 이들 제품 이외에 어떤 제품은 다른 식품 제조에 이용될 수 있는데, 광의의 이들 식품 소재는 새롭고 기발한 발효기법 뿐아니라 전통적인 기법을 사용해서 생산 되기도 한다. 예를 들면 잔탄검(xanthan gum)은 고분자 폴리사카라드로 Bacterium xanthomona campestris를 이용한 발효과정을 통해 생산되는데 기질로서 설탕을 사용한다 젤란검(Gellan Gum)은 수용성 폴리사카이라이드로 Sphingomonas elodea 순수균의 발효에 의해 생산된다. 이와 같은 다중 기능의 하이드로콜로이드는 IFT Food technology 산업 성공상을 수년에 걸쳐 받았고, 제조업자들은 이것을 증점제, 안정제, 조직강화제로 이용했다. 최근 식품, 음료와 의약품에 사용하는 소이이소플라본(soy isoflavone)이 주목을 받고 있다. 소이이소프라본 중 제니스데인(genistein). 다이드제인(daizein)과 글라이스데인(glycitcin) 같은 soy sioflavone이 건강에 이익을 준다고 연구되었고, 독자적인 발효 과정으로 건강 증진과 기능성을 준다는 이들 성분이 더 많이 함유하는 대두 제품을 내놓고 있다. 본문에서는 12개 발효소재(ingredients)를 살펴보고 이들의 최근 개발동향을 재조명해 보았다. 이들의 개발동향은 시간이 결정적인 요인이 될 수 있는 발효과정을 사용하기 때문에 시기적으로 적절하게 인식될 수 있을뿐만 아니라, 건강, 장점,향미와 관련된 오늘날의 시장경향일 수도 있다.

  • PDF

The stabillty of Double-Capsulated Retinol on O/W Eulsion

  • Park, Dong-Soon;Lee, Ok-Sub;Kang, Hak-Hee;Kim, Jong-Il
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.3
    • /
    • pp.24-38
    • /
    • 1997
  • Using the all-trans-retinol which is double-capsulated with matrix, we investigated its stability and the change of the epidermal thickness. The proprietary MDC comprise two steps of capsulation of retinol, i.e., primary microcapsulation with collagen and then secondary capsulation with gellan gum. We compared the activity of all-trans-retinol in various forms such as (1) simply in O/W, (2) in W/O emulsion, (3) in primary capsulted form in O/W emulsion, or (4) in MDC in O/W emulsion. After storage at 45$^{\circ}C$ for 4 weeks, retinol in MDC in O/W emulsion retained 92% of the activity compared to the standard material upon HPLC analysis, whereas the primary capsule gave 70%, the O/W emulsion form 47% and the W/O emulsion 78%. The retinol in MDC in O/W induced the siginificant increase in epidermal thickness compared to the vehicle.

  • PDF

Plant Regeneration from Mesophyll Protoplasts Culture of Solanum sisymbriifolium

  • Kim Hag-Hyun;Shin Un-Dong
    • Journal of Plant Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.169-174
    • /
    • 2005
  • The optimal culture conditions were studied for plant regeneration from mesophyll protoplasts of Solanum sisymbriifolium. Axenic seedlings of S. sisymbriifolium were used as a explant for protoplast culture. Many viable protoplasts were isolated by incubating leaf slices in an enzyme solution containing 0.25% Meicerase and 0.05% Macerozyme for 16 hr at $25^{\circ}C$ without shaking. Protoplast density of $5.0{\times}10^4\;ml^{-1}$ in Kao medium containing 5.0 mg/L NAA, 1.0 mg/L 2,4-D and 1.0 mg/L BA was optimal for colony formation. Most colonies were formed when protoplasts were cultured at $25^{\circ}C$ after initial culture at $30^{\circ}C$ for one week. On the MS agar medium with 1.0 mg/L zeatin, 38.4% of protoplast-derived calli differentiated shoots. These shoots rooted on 1/2MS medium with 5.0 g/L sucrose and 2.5 g/L gellan gum, and developed into whole plants.

Preparation of Tuna Skin Byproduct Film Containing Pinus thunbergii Cone Extract

  • Bak, Jing-Gi;Kim, Jin;Ohk, Seung-Ho
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.360-367
    • /
    • 2020
  • Tuna skin byproduct extract (TSB) was used as a biocompatibility film base material, and its composite film with gellan gum (GG) was prepared. In addition, Pinus thunbergii cone extract (PTCE) was incorporated into the film to provide anti-oxidant and anti-bacteria activities. The tensile strength (TS) of the TSB/GG composite films increased with increasing GG content, whereas elongation at break (E) decreased. TSB/GG film at a ratio of 0.5:0.5 (w/w) showed the most desirable TS and E values. Based on scavenging free radical potentials and disc diffusion method results against growth of bacteria, antioxidant and anti-bacteria activities of films increased with increasing PTCE concentration. Accordingly, this study showed that TSB/GG could be used as a film material while the TSB/GG composite film containing PTCE can be utilized as functional packaging.