• Title/Summary/Keyword: Gel polymer electrolyte

Search Result 107, Processing Time 0.031 seconds

Cycling Performance of Li4Ti5O12 Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes

  • Kim, Jin-Hee;Kang, Yong-Ku;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.608-612
    • /
    • 2012
  • We investigated the cycling behavior of $Li_4Ti_5O_{12}$ electrode in a cross-linked gel polymer electrolyte based on non-flammable ionic liquid consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide and vinylene carbonate. The $Li_4Ti_5O_{12}$ electrodes in ionic liquid-based gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. Cycling data and electrochemical impedance spectroscopy analyses revealed that the optimum content of the cross-linking agent necessary to ensure both acceptable initial discharge capacity and good capacity retention was about 8 wt %.

A Study on the Preparation and Characterization of Gel Polymer Electrolyte from Poly(ethylene glycol) Diacrylate in Sonic Liquid (폴리(에틸렌 글리콜) 디아크릴레이트/이온성 액체 젤형 고분자전해질의 제조 및 특성 연구)

  • Shin Bora;Cho Mi Suk;Kim Dukjoon;Sim Sang Jun;Kim Ji-Heung;Lee Dong Hyun;Nam Jae-Do;Lee Youngkwan
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.216-220
    • /
    • 2005
  • A new type of polymer gel electrolyte was prepared from poly(ethylene glycol) diacrylate(PEGDA) and 1-butyl-3-methylimidazolium bis((trifluorornethyl) sulfonyl) amide$(BuMeIm^+Tf_2N^-)$ ionic liquid. The effect of the ionic liquid on ionic conductivity of the gel polymer electrolyte was investigated. It was observed that the gel polymer electrolyte having the ionic liquid exhibited higher ionic conductivity $(ca.\;10^{-3}S/cm)$ as well as electrochemical stability than that using organic solvent.

Development of EDLC using aqueous polymeric gel electrolytel (수용성 고분자 젤 전해질을 이용한 전기이중층 커패시터 의 개발)

  • 오길훈;김한주;최원경;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.581-584
    • /
    • 2001
  • For the first time, a totally solid state electric double layer capacitor has been fabricated using an alkaline polymer electrolyte and an activated carbon powder as electrode material. The polymer electrolyte serves both as separator as well as electrode binder. The capacitor has a three-layer structure; electrode-electrolyte-electrode. A cyclic voltammetry and constant current discharge have been used for the determination of the electro chemical performance of capacitors.

  • PDF

In Situ Crosslinked Ionic Gel Polymer Electrolytes for Dye Sensitized Solar Cells

  • Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Chang-Jin;Kang, Yong-Ku;Suh, Dong-Hack
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.424-428
    • /
    • 2008
  • We prepared an ionic gel polymer electrolyte for dye-sensitized solar cells (DSSCs) without leakage problem. Triiodide compound (BTDI) was synthesized by the reaction of benzene tricarbonyl trichloride with diethylene glycol monotosylate and subsequent substitution of tosylate by iodide using NaI. Bisimidazole was prepared by the reaction of imidazole with the triethylene glycol ditosylate under strongly basic condition provided by NaH. BTDI and bisimidazole dissolved in an ionic liquid were injected into the cells and permeated into the $TiO_2$ nanopores. In situ crosslinking was then carried out by heating to form a network structure of poly(imidazolium iodide), thereby converting the ionic liquid electrolytes to a gel or a quasi-solid state. A monomer (BTDI and bisimidazole) concentration in the electrolytes of as low as 30 wt% was sufficient to form a stable gel type electrolyte. The DSSCs based on the gel polymer electrolytes showed a power conversion efficiency of as high as 1.15% with a short circuit current density of $5.69\;mAcm^{-2}$, an open circuit voltage of 0.525 V, and a fill factor of 0.43.

Preparation and Characterization of Advanced Organic Polymer - Inorganic Composite Gel Electrolyte for Dye-sensitized Solar Cells (염료 감응 태양전지를 위한 고급 유기 고분자 - 무기 복합 겔형 전해질의 제조와 특성분석)

  • Akhtar, M. Shaheer;Park, Jung-Guen;Kim, Ui-Yeon;Lee, Hyun-Choel;Yang, O-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.350-354
    • /
    • 2009
  • In this work, polymer - inorganic composites have prepared using polymer such as polyethylene glycol (PEG)/poly (methyl methacrylate, PMMA) and inorganic nanofillers materials such as TiO2 nanotubes (TiNTs)/carbon nanotubes (CNTs). The extensive structural, morphological and ionic properties revealed that the high surface area and tubular feature of nanofillers improved the interaction and cross-linking to polymer matrix which is significantly enhanced the ionic conductivity and electrical properties of composite electrolytes. Comparably high conversion efficiency ~4.5% has been observed by using the newly prepared PEG-TiNTs composite solid electrolyte as compared with PMMA-CNTs electrolyte based DSSCs (~3%). The detailed comparative properties would be discussed in term of their structural, morphology, ionic and photovoltaic properties.

  • PDF

Lithium ion Transport Characteristics of Gel-Type Polymer Electrolytes Containing Lithium p-[Methoxyoligo(ethyleneoxy)] benzenesulfonates (리튬 p-[메톡시 올리고(에틸렌옥시)]벤젠설폰산염으로 제조된 젤형 고분자 전해질의 리튬 이온 운반 특성)

  • 허윤정;강영구;한규승;이창진
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.385-391
    • /
    • 2003
  • Lithium p-[Methoxyoligo(ethyleneoxy)] benzenesulfonates (LiEOnBS) with different repeating unit of ethylene oxide were synthesized and were used for preparing gel-polymer electrolytes. The conductivities and lithium ion transference number were measured as a function of Li-salt concentration and repeating unit of ethylene oxide of the LiEOnBS. The maximum conductivity of the resulting gel-polymer electrolyte was found to be 4.89${\times}$10$\^$-4/ S/cm (LiEO7.3BS, 0.5 M) at 30$^{\circ}C$. The lithium ion transference number (t$\sub$Li$\sub$+//) measurement were performed by means of the combination do polarization and ac impedance methods in gel-polymer electrolytes. Lithium ion transference number was measured to be in the range of 0.75∼0.92 for the LiEOnBS containing gel-polymer electrolytes. The maximum t$\sub$Li$\sub$+// was obtained to be 0.92 for the 0.1 M LiEOnBS containing polymer electrolytes. The synthesized LiEOnBS showed single ion transport like characteristics when n was large than 3.

Preparation and application of gel type polymer electrolyte for PEFC (PEFC 연료전지용 겔 타입 고분자 전해질 합성 및 응용)

  • Lee, Sang-Yong;You, Ji-Yeon;Kim, Han-Joo;Oh, Mee-Hye;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.42-45
    • /
    • 2003
  • Inorganic polymer based hybrid membranes consisting of zirconium oxide and polydimethylsiloxane (PDMS) have been synthesized by sol-gel processes. The hybrid membranes showed thermal stability and flexibility up to $300^{\circ}C$. The membrane becomes proton conducting polymer electrolyte when added with 12-phosphotungstic acid (PWA). The conductivity of the membranes was measured in the temperature range from room temperature to $150^{\circ}C$ under saturated humidity and a maximum conductivity of $5{\times}10^{-5}\;Sm^{-1}$ was obtained at $150^{\circ}C$.

  • PDF

Electrochemical Properties of PVdF Gel Polymer Electrolyte with Plasticizer for Lithium/sulfur Battery (리튬 유황 전지용 PVdF 겔 고분자 전해질의 가소제에 따른 전기화학적 특성 평가)

  • Ryu, Ho-Suk;Kim, Jong-Seon;Kim, Dong-Ju;Kim, Dong-Yeon;Kim, Ic-Pyo;Ahn, Hyo-Jun;Kim, Ki-Won;Ahn, Jou-Hyeon;Lee, Gun-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.213-218
    • /
    • 2007
  • In order to find out proper PVdF gel polymer electrolyte for Li/S battery, we investigated PVdF gel polymer electrolytes with various glyme type plasticizer such as polyglyme, tetraglyme, triglyme. The organic solvents as triglyme, tetraglyme, polyglyme (Mn = 250, 500) has different chain length of ethylene oxide(EO) in solvent of glyme system. ionic conductivity decreased as increasing chain length of EO in plasticizers. Ionic conductivity of PVdF gel electrolyte with tetraglyme, triglyme, polyglyme (Mn = 250, 500) at room temperature was $5{\times}10^{-4},\;3{\times}10^{-4},\;6{\times}10^{-5},\;3{\times}10^{-5}\;S/cm$, respectively. Li/S cell with PVdF gel polymer electrolyte using tetraglyme plasticizer had low interfacial resistance and the highest initial discharge capacity of 1232 mAh/g of active sulfur, which was about 70% utilization of theoretical value.

Electrochemical Properties of Gel Polymer Electrolyte including Zinc Acetate Dihydrate for Zinc-Air Batteries (아연-공기 전지용 아세트산 아연 이수화물을 첨가한 고분자 전해질의 전기화학적 특성)

  • Hui Seo Kim;Dong Yun Lee;Yong Nam Jo
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.550-557
    • /
    • 2023
  • In zinc-air batteries, the gel polymer electrolyte (GPE) is an important factor for improving performance. The rigid physical properties of polyvinyl alcohol reduce ionic conductivity, which degrades the performance of the batteries. Zinc acetate is an effective additive that can increase ionic conductivity by weakening the bonding structure of polyvinyl alcohol. In this study, polymer electrolytes were prepared by mixing polyvinyl alcohol and zinc acetate dihydride. The material properties of the prepared polymer electrolytes were analyzed by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Also, Electrochemical impedance spectroscopy was used to calculate ionic conductivity. The electrolyte resistances of GPE, 0.2 GPE, 0.4 GPE, and 0.6 GPE were 0.394, 0.338, 0.290, and 0.213 Ω, respectively. In addition, 0.6 GPE delivered 0.023 S/cm high ionic conductivity. Among all of the polymer electrolytes tested, 0.6 GPE showed enhanced cycle life performance and the highest specific discharge capacity of 11.73 mAh/cm2 at 10 mA. These results verified that 0.6 GPE improves the performance of zinc-air batteries.