• Title/Summary/Keyword: Gel coating

Search Result 696, Processing Time 0.024 seconds

A Study on the Preparation of CdS Doped $SiO_2$ Glass Coating Films by Sol-Gel Method (졸-겔법에 의한 CdS 분산 $SiO_2$ Glass 코팅막의 제조에 관한 연구)

  • 박한수;김경문;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.897-904
    • /
    • 1993
  • CdS doped SiO2 glass coating films which are good candidates for the nonlinear optical materials were prepared by the Sol-Gel method. TEOS, C2H5OH, H2O and HCl were used as starting materials to obtain SiO2 matrix solutions. Then Cd(NO3)2.2H2O and CS(NH2)2 were dissolved into the SiO2 matrix solutions. Coating was performed several times in order to increase the thickness of coated film by the dip-coating method. Then heat treatments were carried out to control the size of CdS microcrystals doped in SiO2 glass matrix with respect to temperatures and times. CdS-doped SiO2 transparent coating films were successfully obtained. CdS crystals were changed from cubic to hexagonal type about $600^{\circ}C$.

  • PDF

Characterization of F- and Al-codoped ZnO Transparent Conducting Thin Film prepared by Sol-Gel Spin Coating Method

  • Nam, Gil Mo;Kwon, Myoung Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.338-342
    • /
    • 2016
  • ZnO thin film co-doped with F and Al was prepared on a glass substrate via simple non-alkoxide sol-gel spin coating. For a fixed F concentration, the addition of Al co-dopant was shown to reduce the resistivity mainly due to an increase in electrical carrier density compared with ZnO doped with F only, especially after the second post-heat-treatment in a reducing environment. There was no effective positive contribution to the reduction in resistivity due to the mobility enhancement by the addition of Al co-dopant. Optical transmittance of the ZnO thin film co-doped with F and Al in the visible light domain was shown to be higher than that of the ZnO thin film doped with F only.

Fabrication of $WO_3$ thin film by sol-gel dip-coating method (Sol-gel dip-Coating법에 의한 $WO_3$ 박막 제조)

  • 김창열;김병섭;임태영;오근호
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.189-189
    • /
    • 2003
  • WO$_3$ 박막은 H$^{+}$이온이나 Li$^{+}$ 이온과 반응하여 H$_2$WO$_4$나 Li$_{x}$WO$_{3+x}$의 화합물을 이루고 파란색을 나타내는 효과를 보인다. 이러한 효과를 전기변색 (electrochromic) 효과라 한다. 이러한 전기변색효과를 이용하여 건축물의 창문을 통하여 들어오는 태양에너지와 빛의 양을 조절하는 윈도우를 제작하려는 국가적인 프로젝트가 미국, EU, 일본 등의 선진국에서 활발하게 진행되고 있다. WO$_3$ 박막을 제조하는 방법으로는 sputtering, CVD, 그리고 sol-gel coating 법 등이 있다. sputtering이나 CVD의 경우는 매우 균일하고 전기변색 특성이 좋은 박막을 제조할 수 있는 이점이 있지만 장치의 제조비가 비싸고 대형 패널을 제작하는 데에는 어려움이 있다. 솔-젤 코팅의 경우는 WO$_3$의 전구체인 솔을 합성하고 bath에 솔을 넣은 후 코팅하고자 하는 글라스 기판을 담갔다가 꺼내어 건조하고 열처리하는 간단한 방법으로 제조할 수 있는 장점이 있다. 솔-젤 코팅의 경우 제조비가 값싸고 대면적 코팅이 용이하다는 점이 다른 코팅 방법에 비하여 장점이라고 한 수 있다.다.다.

  • PDF

The Preparation of Sol-Gel Derived Aminoalkoxysilane Films and its Application for Oxygen Barrier (솔-젤법을 이용한 aminoalkoxysilane 산소차단필름의 제조)

  • Kim, Hyun-Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.17-21
    • /
    • 2006
  • The oxygen barrier films were formed on poly(ethylene terephthalate) (PET) substrate by a sol-gel process using aminoalkoxysilanes. The coating layers were characterized by FT-IR and SEM. The oxygen permeability coefficients of coating films were measured by variable volume method, and then the influences of solvent ratio in sol and film drying temperature on the oxygen barrier properties were investigated. The aminoalkoxysilane coating films exhibited much higher oxygen barrier properties than PET film. The oxygen permeability coefficient of the film coated with each of APTEOS and APTMOS was measured to be $2.96{\times}10^{-6}$ and $3.05{\times}10^{-5}\;GPU$, respectively, while that of PET film was $1.16{\times}10^{-4}\;GPU$.

  • PDF

Sol-gel Spin-coating of ZnO Co-doped with (F, Ga) as A Transparent Conducting Thin Film ((F, Ga) 코도핑된 ZnO 투명 전도 박막의 솔-젤 제조와 특성)

  • Nam, Gil Mo;Kwon, Myoung Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.91-95
    • /
    • 2014
  • (F,Ga) co-doped ZnO thin film on glass substrate was fabricated via a simple non-alkoxide sol-gel spin-coating. Contrary to the F single doped ZnO thin film, the (F,Ga) co-doped thin film showed a significant reduce in electrical resistivity after a second post-heat-treatment in reducing environment. The resulting decrease in electrical resistivity with Ga co-doping is considered to be resulted from the increases both carrier density and mobility. The optical transmittance of the (F,Ga) co-doped thin film in the visible range showed higher transmittance with Ga co-doping compared with F single doped ZnO thin film.

Optimum Synthesis and Characterization of Precursor Solution for a Hard Coating Silica Film Prepared by Sol-Gel Process

  • Kim, Seon Il;Kim, Gu Yeol;Im, Hyeong Mi;Lee, Bong U;Na, Jae Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.817-822
    • /
    • 2000
  • Crack-free hard coating siIica films were prepared by sol-gel processfrom twokinds of silicon alkoxide (tetra-ethoxysilane and methyltrimethoxysilane) and two kinds of alcohol (methanol and isopropyl alcohol) with an acid catalyst,acetic acid. A silicate framework of the precursor solution was investigated by infrared spectros-copy (IR) in the process of hydrolysis and condensation. Theextent of the condensation in the intermediates was elucidated by gel permeation chromatography (GPC) and 29Si-NMR spectroscopy. The hard coating films werecharacterized by IR,scanning electron microscope (SEM), thermo gravimetric analyzer (TGA) and dif-ferential scanning calroimeter (DSC). The synthetic condition for the crack-free and transparent silica film for-mation was optimized interms of starting materials for the precursor solution as well as preparation method of the silica film.

Al-doped ZnO via Sol-Gel Spin-coating as a Transparent Conducting Thin Film

  • Nam, Gil-Mo;Kwon, Myoung-Seok
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • A simple nonalkoxide sol-gel route for depositing an Al-doped ZnO thin film on a glass substrate was derived in this study. The initial Al dopant concentration in the sol-gel preparation varied and ranged from 0 to 5%. The sol-gel-derived thin films showed c-plane preferred crystallization of their hexagonal phase, with nanosized grain structures. First and second post-heat-treatments were carried out to improve the film’s electrical resistivity. The carrier density and the Hall mobility were measured and discussed to explain the electrical resistivity. The optical transmittance within the visible range showed compatible properties, which indicates the possible use of A1-doped ZnO as a transparent electrode in flat panel displays.

Preparation of Unsaturated Polyester-based Hybrid Gel-Coats Containing Urethane Acrylate and Their Coating Performance

  • Kim, Ji-Hee;Baek, Seung-Suk;Kim, Oh Young;Park, Dong Hyup;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.247-251
    • /
    • 2019
  • Two different urethane acrylates (mono-acrylate and di-acrylate) were used to prepare unsaturated polyester-based hybrid gel-coats. The physical properties and surface characteristics of these gel-coats were investigated on the basis of the content and type of urethane acrylate. The set-to-touch time increased and the physical properties (surface hardness and tensile strength) decreased with an increase in the urethane acrylate content. However, the type of urethane acrylate did not affect these parameters. It was found that the optimal urethane acrylate content for the application of unsaturated polyester-based hybrid gel-coats is ~10 wt%.

Polarity-tuned Gel Polymer Electrolyte Coating of High-voltage LiCoO2 Cathode Materials

  • Park, Jang-Hoon;Cho, Ju-Hyun;Kim, Jong-Su;Shim, Eun-Gi;Lee, Yun-Sung;Lee, Sang-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • We demonstrate a new surface modification of high-voltage lithium cobalt oxide ($LiCoO_2$) cathode active materials for lithium-ion batteries. This approach is based on exploitation of a polarity-tuned gel polymer electrolyte (GPE) coating. Herein, two contrast polymers having different polarity are chosen: polyimide (PI) synthesized from thermally curing 4-component (pyromellitic dianhydride/biphenyl dianhydride/phenylenediamine/oxydianiline) polyamic acid (as a polar GPE) and ethylene-vinyl acetate copolymer (EVA) containing 12 wt% vinyl acetate repeating unit (as a less polar GPE). The strong affinity of polyamic acid for $LiCoO_2$ allows the resulting PI coating layer to present a highly-continuous surface film of nanometer thickness. On the other hand, the less polar EVA coating layer is poorly deposited onto the $LiCoO_2$, resulting in a locally agglomerated morphology with relatively high thickness. Based on the characterization of GPE coating layers, their structural difference on the electrochemical performance and thermal stability of high-voltage (herein, 4.4 V) $LiCoO_2$ is thoroughly investigated. In comparison to the EVA coating layer, the PI coating layer is effective in preventing the direct exposure of $LiCoO_2$ to liquid electrolyte, which thus plays a viable role in improving the high-voltage cell performance and mitigating the interfacial exothermic reaction between the charged $LiCoO_2$ and liquid electrolytes.

Preparation of Water-Repellent Coating Solutions from Tetraethoxysilane and Methyltriethoxysilane by Sol-Gel Method (졸-겔법에 의해 Tetraethoxysilane과 Methyltrimethoxysilane으로부터 발수코팅제 제조)

  • Kim, Dong Gu;Lee, Byung Wha;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.327-334
    • /
    • 2018
  • Water-repellent coating solutions were prepared by sol-gel method using tetraethoxysilane (TEOS) and methyltrimethoxysilane (MTMS) as precursors. The solutions were spin-coated on a cold-rolled steel sheet and thermally cured to prepare a non-fluorine water-repellent coating films. The effects of molar ratios of MTMS/TEOS, water concentration and ammonia concentration on the hydrophobic properties of the coating films were studied. The contact angle of water on coating films prepared by varying the molar ratio of MTMS/TEOS to 1~20 showed a maximum value of $108^{\circ}$ when the MTMS/TEOS molar ratio was 10. With increasing water content, the coating films showed the larger contact angles and the better the water repellency. As the amount of ammonia added was increased, the contact angles of coating films were increased, showing the better the water repellency. It is considered that the larger the amount of ammonia added, the larger the size of the silica particles generated, which increases the surface roughness of the silica particles, thereby increasing the water repellency.