• Title/Summary/Keyword: Gel Shift Assay

Search Result 44, Processing Time 0.023 seconds

Transcriptional regulation of soybean ${\beta}-conglycinin$ gene expression. -(I) Identification of a soybean embryo factor interacting with upstream region of soybean ${\beta}-conglycinin$ gene- (대두 ${\beta}-conglycinin$ 유전자 발현의 전사 조절에 관한 연구 -(I) 대두 ${\beta}-conglycinin$ 유전자의 upstream 영역에 결합하는 대두 배 인자의 동정-)

  • Lee, Jeong-Yeon;Chung, Dong-Hyo;Kim, Woo-Yeon
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.547-552
    • /
    • 1993
  • Soybean nuclear extracts and S-100 were prepared to examine the soybean embryo factors which bind to the upstream region of soybean ${\beta}-conglycinin$ ${\alpha}'$ subunit gene. SEF3(soybean embryo factor 3), which is presumed to be a trans-acting factor for the expression of the gene, was detected in gel mobility shift assay using the DNA probe containing two AACCCA hexanucleotides. DNA probe containing CATGCAT or AACACA was used to find any other soybean embryo factor interacting with the upstream region of ${\beta}-Conglycinin$ ${\alpha}'$ subunit gene. It was found that there was no common DNA binding protein detected both in nuclear extracts and S-100. The relative levels of SEF3 binding activity both in nuclear extracts and S-100 of maturing soybean seeds were determined. SEF3 activity of nuclear extracts was first detected around 20 days after pollination and significantly increased around 32 days after pollination.

  • PDF

Identification of another calmodulin-binding domain at the C-terminal region of AtCBP63

  • Kim, Sun-Ho;Kang, Yun-Hwan;Han, Hay-Ju;Bae, Dong-Won;Kim, Min-Chul;Lim, Chae-Oh;Chung, Woo-Sik
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • Calcium signals can be transduced by binding calmodulin (CaM), a $Ca^{2+}$ sensor in eukaryotes, is known to be involved in the regulation of diverse cellular functions. We isolated a CaM-binding protein 63 kD (AtCBP63) from the pathogen-treated Arabidopsis cDNA expression library. Recently, AtCBP63 was identified as a CaM bining protein. The CaM binding domain of AtCBP63 was reported to be located in its N-terminal region, In this study, however, we showed that ACaM2 could specifically bind to second CaM-binding domain (CaMBD) of AtCBP63 at the C-terminal region. The specific binding of CaM to CaM binding domain was confirmed by a gel mobility shift assay, a split ubiquitin assay, site-directed mutagenesis, and a competition assay using a $Ca^{2+}$/CaM-dependent enzyme. The gene expression of AtCBP63 was induced by pathogens and pathogens related second messengers. This result suggests that a CaM binding protein, AtCBP63, may play role in pathogen defense signaling pathway.

Root Bark of Morus Alba Suppresses the YAP Activity through Activation of Classical Hippo Signaling Pathway (상근피의 Hippo 신호전달 경로 활성화를 통한 YAP 억제 효능)

  • Cho, You Na;Choi, Da Bin;Jeong, Han Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.191-197
    • /
    • 2019
  • This study aims to evaluate the effects of the root bark of Morus alba (RMA) on the regulation of the Hippo-YAP pathway. Hippo-YAP signaling is a critical regulator in controlling organ size and tissue homeostasis. Hippo, the serine/threonine kinase phosphorylate the LATS. Phosphorylated LATS then phosphorylates and inactivates the YAP and TAZ, which are two closely related transcriptional co-activator. Here we report RMA activates the Hippo signaling, thereby inhibits the YAP/TAZ activity. First, we examine the cytotoxic effects of RMA by MTT assay. RMA was cytotoxic at concentrations higher than $50{\mu}g/ml$ in HEK293A cells. The reporter gene assay was performed to measure the activity of TEAD, a key transcription factor that controls cell growth and proliferation. RMA significantly suppressed the luciferase activity. By phos-taq gel shift assay, and western blotting, we showed that RMA enhanced the phosphorylation of YAP in wild type cells, but not in LATS1/2 knock out cells, which means RMA activates classical Hippo pathway. RMA induced the cytoplasmic sequestration of YAP. RMA also suppressed the mRNA expression of CTGF and CYR61; the two major YAP dependent genes. Taken together, RMA is considered to be a good candidate for proliferative disease such as cancer, by facilitating cell death through activating the Hippo signaling pathway.

Inhibitory Effect of Paeoniflorin on Fos-Jun-DNA Complex Formation and Stimulation of Apoptosis in HL-60 Cells

  • Kwon, Hae-Young;Kim, Kyoung-Su;Park, Se-Yeon;Lee, Dug-Keun;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.28-32
    • /
    • 2001
  • The Fos-Jun heterodimers are part of the regulatory network of gene expression and nuclear proteins encoded by proto-oncogenes. The activation of Fos-Jun is important in the transmission of the tumor-promoting signal from the extracellular environment to the nuclear transcription mechanism. To search for the inhibitors of the Fos-Jun DNA complex formation, several natural products were screened and water-soluble paeoniflorin reduced the binding activity of the Fos-Jun heterodimer. This active compound was purified by silica gel column chromatography and HPLC. The electrophoresis mobility shift assay and reverse-phase HPLC test showed that paeoniflorin reduced the AP-l function. The cytotoxic effect of paeoniflorin was observed in HL-60. These results indicate that paeoniflorin blocks the Fos-Jun heterodimer-binding site of the AP-l DNA and it also has cytotoxic effects on human leukemia cell lines.

  • PDF

RNA Binding Specificities of Double-Stranded RNA Binding Protein (RBF) as an Inhibitor of PRK Kinase (PKR인산화효소 억제인자인 이중선RNA결합단백질 (RBF)의 RNA결합특이성)

  • 박희성;최장원
    • Journal of Life Science
    • /
    • v.6 no.4
    • /
    • pp.234-240
    • /
    • 1996
  • A double-stranded RNA binding factor (RBF), characterized as an inhibitor of PKR kinase in our previous study, was evaluated for its RNA binding specificities by RNA gel electrophoretic mobility shift analysis and membrane filter binding assay, RBF displayed affinities for a broad range of RNAs including viral RNAs and synthetic RNAs consiting of stem and loop structures. GC-rich RNA stem helices as short as 11 bp are suggested to represent the minimal binding motif for RBF. RBF binding to all the natural RNAs tested was reversible by poly(I): poly(C) addition, but E. coli 5S RNA was inefficient.

  • PDF

TR4 Inhibits LXR-mediated Decrease of Lipid Accumulation in 3T3-L1 Adipocytes

  • Choi, Ho-Jung;Kim, Eung-Seok
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.398-404
    • /
    • 2011
  • TR4 has been suggested to play an important role in lipid metabolism in adipocytes. Although TR4 facilitates lipid accumulation during adipogenesis, the regulatory effect of TR4 on lipid storage in mature adipocytes remains unclear. We showed that TR4 inhibited the LXR agonist GW3965-mediated decrease of lipid accumulation in 3T3-L1 adipocytes. A reporter gene analysis revealed that TR4 suppressed LXR${\alpha}$ transcriptional activity, although LXR${\alpha}$ was unable to affect TR4 transcriptional activity. Moreover, adding TR4 resulted in reduced LXR${\alpha}$ binding to the LXR responsive element in a gel shift assay. Additionally, the suppressive effect of GW3965 on perilipin expression and lipid accumulation in 3T3-L1 adipocytes was abolished by TR4 overexpression. Taken together, our data demonstrate that TR4 plays an inhibitory role in LXR${\alpha}$-mediated suppression of lipid accumulation in 3T3-L1 adipocytes. This TR4 protective effect is mediated, in part, y blocking the suppressive effect of GW3965 on perilipin gene expression.

Expression of Gal4-VP16 and Gal4-DNA binding domain under the control of the T lymphocyte-specific lck proximal promoter in transgenic mice

  • Ryu, Chun-Jeih;Whitehurst, Charles E.;Chen, Jianzhu
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.575-580
    • /
    • 2008
  • Thymocyte-specific transcriptional regulatory systems can be used to better understand the relationship between transcription and V(D)J recombination during early T cell development. In this study, we generated transgenic mice expressing the transactivator Gal4-VP16 or the Gal4 DNA binding domain (Gal4-DBD) under the control of the lck proximal promoter, which is only active in immature thymocytes. From these studies Gal4-VP16 and Gal4-DBD expression was shown to significantly alter thymic cellularity and differentiation without significantly changing the $CD3^+$ thymocyte distribution. Furthermore, the presence of Gal4-VP16 or Gal4-DBD in the transgenic thymocytes retarded the mobility of the Gal4 DNA binding motif as determined by a gel mobility shift assay, suggesting that the developmental alteration did not affect the functional property of the transgenic proteins. These results indicated that lck promoter-driven Gal4-VP16 or Gal4-DBD expression did not affect $CD3^+$ mature thymocytes, thus this system can be applied to study transcriptional regulation of transresponder genes in bigenic mouse model thymocytes.

Screening and Characterization of a Novel RNA Aptamer That Specifically Binds to Human Prostatic Acid Phosphatase and Human Prostate Cancer Cells

  • Kong, Hoon Young;Byun, Jonghoe
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2'-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2'-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer.

Binding of IciA protein to the dnaA promoter region

  • Kim, Hakjung;Hwang, Deog-Su
    • Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.191-195
    • /
    • 1995
  • IciA protein has been shown as an inhibitor for the initiation of E. coli chromosomal DNA replication at oriC. IciA protein binds the AT-rich region in oriC and then blocks the initiation of chromosomal DNA replication. Two binding sites for IciA protein were identified in dnaA gene, encoding the initiator for the E. coli chromosomal replication, promoter region by gel-shift assay and DNase I footprinting, One, named as IciA site I, is located upstream of the dnaA promoter 1P. The other, named as IciA site II, is located downstream of the dnaA promoter 2P. The sequence comparison of the regions protected from the DNase I cleavage did not result in a clear consensus sequence for the binding of IciA protein, suggesting that IciA protein may be a member of multimeric complex dsDNA binding proteins. This study provided information about the binding mode of IciA protein. Even though the IciA site II and IciA binding site in oriC seem to be composed of two IciA binding units, one binding unit is likely enough to cause the binding of IciA protein to the IciA site I. The binding of IciA protein to the dna4 promoter implies that IciA protein may involve not only the control of the initiation of chromosomal DNA replication but also the control of the dna4 gene expression.

  • PDF

Probing the Functional Motifs of Escherichia coli 5S rRNA in Relation to 16S rRNA Using a SELEX Experiment

  • 고재형;조봉래;안정근;이용훈;박인원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1335-1339
    • /
    • 1999
  • The function of 5S rRNA, a constituent of a large subunit of ribosome, is not clearly known yet. To identify RNA motifs interacting with 5S rRNA, and thereby to get an insight into the function of 5S rRNA in the ribosome, a SELEX (Systematic Evolution of Ligands by Exponential Enrichment) experiment was performed. RNA molecules binding to Escherichia coli 5S rRNA were selected from a 48-mer random sequence library through 12 rounds of selection, cloned, and sequenced. Two groups of the selected RNA molecules had the consensus sequences GCGG and GUGAAA, respectively, which are present in the segment, G688 through A696, of E. coli 16S rRNA. The gel mobility shift assay showed that 5S rRNA interacted with the 16S rRNA fragment containing the GCGG and GUGAAA sequences. The enzymatic protection experiment shows that the A29CCUGA34 and G51AAGUG56 sequences of 5S rRNA and the C680AGG683 and G688CGG691 sequences of the 16S rRNA fragment are involved in the interaction between the two RNA molecules. On the basis of this observation, we suggest that 5S rRNA and 16S rRNA play a role for the association of two ribosomal subunits.