• Title/Summary/Keyword: Gear position

Search Result 140, Processing Time 0.022 seconds

A Study on Development of Inductive Sensor System for Locating Geared Part and Gear Position in Geared Shaft (기어 축의 기어 및 이 끝 위치 판별을 위한 유도형 센서시스템의 개발에 관한 연구)

  • Oh, Seok Gyu;Bae, Kang Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.223-232
    • /
    • 2014
  • An inductive sensor system is proposed to detect the gear location and angular position of a geared shaft for automatic feeding of the shaft into the proper cutting position of the other end. The system consists of two set of coils, bridge circuit, signal condition circuit, and microprocessor. The coil sensors of the system measure changes of inductance along with the surface position of a geared shaft. The inductance changes are transformed to voltages by the bridge circuit, which are then conditioned and processed for the recognition of the gear. In order to incorporate with the experimental results with the sensor system, a finite element method (FEM) simulation for the magnetic field between the sensor and the shaft was carried out. The predicted results and the experiments revealed that the sensor system was appropriate for sensing the position of gear and the angular position of gear tooth of a geared shaft.

Calculating and Measuring the Sinking Performance of Small-scale Purse Seine Gear in Java, Indonesia, to Improve the Gear

  • Widagdo, Aris;Lee, Chun-Woo;Lee, Jihoon
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.221-227
    • /
    • 2015
  • We analyzed the small-scale purse-seine gear that is used along the North Coast of Java, Indonesia, using computer-aided tools to modify the gear. Data from the middle position of the leadline showed that the maximum depth reached by the net was 30 m. A similar result was also calculated. According to the calculated result, the mean sinking speed of the current gear at the middle position of the leadline was 0.13 m/s, and the maximum tension during pursing was 1,794 kgf. The best sinking performance was found in modified gear that used a 30.3 mm mesh knotless polyester net. The maximum depth reached by the net was 38 m, and mean sinking speed was 0.16 m/s at the middle position of the leadline. The maximum tension during pursing was 1,044 kgf. Independent sample t-test results show that the mean sinking depth and sinking speed in the simulated and measured results did not differ (P > 0.05). These results are expected to improve the efficiency and selectivity of small-scale purse seine gear.

Effect Analysis of Carrier Pinhole Position Error on the Load Sharing of Planetary Gear (캐리어의 핀홀 위치 오차가 유성기어의 하중 분할에 미치는 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.67-72
    • /
    • 2016
  • Planetary gear sets are widely used in power transmission components, which have high efficiency and good durability. Their most important design parameter is the load-sharing characteristics among several planetary gears. In this study, the load sharing of planetary gears was analyzed according to the carrier pinhole position error of planetary gear sets. The loads acting on planetary gears varied with the pinhole position error of the carrier, and the load sharing of planetary gears improved as the input load increased. In addition, the load of the planetary gear with a carrier pinhole position error was relatively higher than that of other planetary gears without carrier pinhole position errors. This trend appeared more clearly in the non-floating-type carrier than the floating-type carrier.

Effect Analysis of Carrier Pinhole Position Error on the Load Sharing and Load Distribution of a Planet Gear (캐리어의 핀홀 위치 오차에 따른 유성기어의 하중 분할 및 하중 분포 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Young-Joo;Oh, Joo-Young;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.66-72
    • /
    • 2016
  • Gearboxes are mechanical components that transmit power by adjusting input and output speed and torque. Their design requirements include small size, light weight, and long lifespan. We have investigated the effects of carrier pinhole position error on the load sharing and load distribution characteristics of a planetary gear set with four planet gears. The simulation model for a simple planetary gear set was developed and verified by comparing analytical results with a putative model. Then, we derived the load sharing and load distribution characteristics under various pinhole position error conditions using the prototypical simulation model. The results showed that the mesh load factor and face load factor increased with the pinhole position error, which then influenced the safety factor for tooth bending strength and surface durability.

An Analytical Study on Control Algorithm for the Precise Position Control of the Actuator System (구동장치의 정밀한 위치제어를 위한 구동제어기법에 대한 해석적 연구)

  • Ahn, Wongeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2016
  • Using a actuator to which the motor and the gear is applied to the I-PD control method and a dual-loop system to carry out precise position control. I-PD control algorithm performs an operation to reduce the overshoot in the transient response. Accordingly, the actuator obtains a precise position tracking result. Also it utilizes two sensors and dual loops. It reduces the adverse effect on the precise position control that may occur by the end play of the gear train. In this paper, we uses the actuator model applying the BLDC motor and gear in order to determine the position tracking result by the dynamic characteristic change. It was verified by the simulation results.

Analysis on Cutting Force of Tool in Gear Chamfering Process (기어 챔퍼링 공정에서 공구의 절삭력 해석)

  • Choi, Boo-Rim;Hwang, Kwang-Bok;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.52-62
    • /
    • 2013
  • In order to obtain the relation between the cutting force and the process parameters in the chamfering process for the gear of a gear shaft, analysis of the process was performed with a simplified model instead of considering the whole actual 3-dimensional cutting situation produced between cutting tool and gear. The model divided the actual situation into the accumulation of hundreds of 2-dimensional layers with a small thickness in the direction of the height of gear and derived cutting force at a cutting position by accumulating each cutting force calculated in a layer. With proposed method to analyze the cutting forces in the chamfering process, it was revealed that the cutting position and size were exactly searched to calculate the cutting force in each layer. The total cutting force was the highest in the corner where the cutter encountered the gear first during the relative motion between them. The cutting forces were changed in proportion to the cutting parameters such as feed rate and trajectory.

Physics-based Diagnostics on Gear Faults Using Transmission Error (전달오차를 이용한 물리기반(Physics-Based) 기어고장진단 이론연구)

  • Park, Jungho;Ha, Jongmoon;Choi, Jooho;Park, Sungho;Youn, Byeng D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.505-508
    • /
    • 2014
  • Transmission error (TE) is defined as "the angular difference between the ideal output shaft position and actual position". As TE is one of the major source of the noise and vibration of gears, it is originally studied with relation of the noise and vibration of the gears. However, recently, with the relation of mesh stiffness, TE has been studied for fault detection of spur gear sets. This paper presents a physics-based theory on fault diagnostics of a planetary gear using transmission error. After constructing the lumped parameter model using DAFUL, multi-body dynamics software, we developed a methodology to diagnose the faults of the planetary gear including phase calculation, signal processing. Using developed methodology, we could conclude that TE could be a good signal for fault diagnostics of a planetary gear.

  • PDF

A Study on a Control of Hydraulic Steering Gear by Using Three-Position Solenoid Valve (3위치 솔레노이드 벨브를 이용한 유압 조타 장치의 제어에 관한 연구)

  • Shim, Sung-Hyo;Lee , Hak-Do
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.231-237
    • /
    • 1998
  • Generally, the three position solenoid valve has veen used for the hydraulic steering gear on account of it’s low cost, simplicity in device, etc. But, there is some off-set because of dead-zone which exists in on-off valves. In this paper, we proposed a combined controller which was added an integral controller to an only on-off one in hydraulic steering gear control system used low speed three position solenoid valve. Experimental results show that the off-set is removed, and the number of valve switching is reduced considerable. The validity of proposed method comparing with an only on-off control was proved by the response experiments.

  • PDF

Characteristic Analysis of Planetary Gear Set of Hydromechanical Transmission System of Agricultural Tractors

  • Park, Young-Jun;Kim, Jeong-Gil;Lee, Geun-Ho
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.145-152
    • /
    • 2016
  • Purpose: This study aims to establish the effect of pinhole position errors in the planet carrier of a planetary gear set (PGS) on load sharing among the planet gears in the hydromechanical transmission (HMT) system of an agricultural tractor. Methods: A simulation model of a PGS with five planet gears was developed to analyze load sharing among the planet gears. The simulation model was verified by comparing i ts r esults w ith those of a model developed in a previous s tudy. The verified simulation model was used to analyze the load-sharing characteristics of the planet gears with respect to the pinhole position error and the input torque to the PGS. Results: Both simulation models had identical load magnitude sequences for the five planet gears. However, the load magnitudes on the corresponding planet gears differed between the models because of the different stiffnesses of the PGS components and the input torques to the PGS. The verified simulation model demonstrated that the evenness of load sharing among the planet gears increases with decreasing pinhole position error and increasing input torque. Conclusions: The geometrical tolerance of the pinhole position should be properly considered during the design of the planet carrier to improve the service life of the PGS and load sharing among the planet gears.

A study on the dynamic characteristics of an epicyclic gear trains supported with journal bearing (저널베어링으로 지지된 유성기어열의 동특성에 관한 연구)

  • Lee, Jeong-Han;Ryu, Hyeong-Tae;Cheon, Gil-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.198-205
    • /
    • 1998
  • In this paper, the dynamic characteristics of a star type epicyclic gear train have been analyzed. Nonlinear stiffness of a gear pair were obtained considering the bending and shear deformation, Hertz contact deformation, as well as tooth fillet deformation. Nonlinear stiffness coefficients and damping coefficients around the static equilibrium position were obtained by perturbation method. The loci of the planet gears and sun gear were estimated. Tooth meshing forces and bearing reaction forces were calculated. The effects of bearing clearance and oil viscosity on the gear behavior were also analyzed.