• Title/Summary/Keyword: Gear Transfer Mechanism

Search Result 6, Processing Time 0.016 seconds

Design of Planetary Gear Drive Unit for Drive Conversion of Transfer case (Transfer case의 구동변환을 위한 유성기어장치 구동부 설계)

  • Youm, Kwang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Since the four-wheel drive transmits the driving force to all four wheels, the traction with the road surface increases, thereby increasing the driving force. However, it has the disadvantage of lowering fuel efficiency. Therefore, four-wheel drive is commonly used as a method of converting to optional four-wheel drive when necessary while driving in two-wheel drive. This selective four-wheel drive converts the driving force by mechanically changing the electric signal sent by the driver in the transfer case. In this study, in order to mechanically change the electrical signal, a reducer is applied to the motor to increase the torque to perform the function. Therefore, in this study, a reduction mechanism applicable to the motor inside the transfer case applied to convert the drive is derived, and the reduction ratio applying the planetary gear type is optimized accordingly. And based on the derived reduction ratio, two sets of planetary gears using a ring gear in common were applied to develop a planetary gear tooth type in which the input shaft and output shaft are decelerated in the same phase. Optimization design was carried out.

New Mechanism for Wafer Guide to Minimize the Drop in Wafer Transfer (반송 시 웨이퍼 이탈을 최소화 하기 위한 새로운 형태의 웨이퍼 가이드 메커니즘)

  • Kim, Dea-Won;Ryu, Jee-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • In this paper, wafer drop from wafer guide mechanism, which is one of the serious problems in water transfer robot, is analyzed, and new wafer guide mechanisms are proposed to minimize this drop. Three types of new wafer guide mechanisms are proposed: roller type, gear type and L-shape rocker type. We choose one of the proposed mechanism, which is roller type, and verified this mechanism through real transfer experiment. Wafer picking up test is conducted with initial aligning error for simulating the wafer drop. Number of drop is compared between conventional mechanism and proposed mechanism. As a result, we can find the proposed mechanism can reduce the number of wafer drop dramatically.

A Study on Response Time Delay and Tracking Error Suppression Strategy in Gear Mechanism : Control System Design Approach (기어 백래쉬로 인한 응답지연 및 추종오차 억제방안에 관한 연구)

  • Tran, Manh Son;Choi, Eun-Ho;KIM, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.77-83
    • /
    • 2017
  • The aim of this paper is to solve the chattering and delayed response problems caused by gear backlash. In the gear mechanism based systems, for example, in robot systems, the actuators provide the reduction gear with motors to transfer effectively electric power to mechanical power. Therefore, the gear backlash exists and is an unavoidable fact which makes many undesirable problems. In this paper, the authors try to make a solution for this issue and, introduce several control methods which are PID only, PID with Smith predictor and super-twisting algorithm based SMC(sliding mode control). Each control method is applied to the real plant in which strong backlash is included. By comparison results, it is clear that SMC gives the best control performance with little backlash effects. Also, the usefulness and effectiveness of proposed control method is verified by experiment.

A Study on Shape Design of Cylindrical Cam with Rotating Roller Follower in Roller-Gear-Cam Mechanism (롤러기어캠 기구를 위한 회전운동형 롤러 종동절을 가진 원통 캠의 형상 설계에 관한 연구)

  • Sin, Jung-Ho;Gang, Dong-U;Yun, Ho-Eop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1527-1533
    • /
    • 2002
  • When a mechanism transfers a motion to an intersected shaft, a cylindrical cam mechanism may be the best choice among the mechanisms. The cylindrical cam with a roller follower provides to transfer the motions to the intersect shafts simply without other connecting equipments of the intersect shafts. Typical example may be a roller-gear-cam mechanism. But the shape of the cam must be exactly defined in order to satisfy the conditions for the prescribed motion of the follower. This paper proposes a new method for the shape design of the cylindrical cams and also a CAD program is developed by using the proposed method. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints. The constraint used in the relative velocity method is that the relative velocity must be parallel to a common tangent line at the contact point of two independent bodies, i. e. the cam and the follower. Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. Finally, this paper presents an example in order to prove the accuracy of the proposed methods in this paper and the application of the CAD program"CamDesign".

Study on Development of Wheelchair Transfer-Storage Mechanism for Car (차량용 휠체어 이송수납메커니즘의 개발에 관한 연구)

  • Lim, Gu;Kim, Yong Seok;Le, QuangHoan;Jeang, Young Man;Oh, Dong Kwan;Oh, Ji Woo;Yea, Chan Ho;Yang, Soon Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1109-1116
    • /
    • 2014
  • The wheelchair mechanism for a car that is proposed in this study primarily consists of a transfer mechanism and storage mechanism. The wheelchair transfer mechanism consists of a manipulator installed in the roof of a car, and performs the function of transferring the wheelchair from the driver's seat to the trunk. The wheelchair storage mechanism consists of a lifting hoist installed in the trunk of car, and performs the function of storing the transferred wheelchair in the trunk and safely fastening it in place. This study analyzed and reviewed various manipulators, including a vertical type, Scara type, and telescopic type, with the goal of selecting the best type of manipulator for the wheelchair transfer mechanism. The telescopic type was selected and applied because of its good load support and storage capabilities. In addition, with regard to the wheelchair storage mechanism, a slide hoist type that used a slide rail and lift wire and a rotating link hoist type that used a rotating mechanism consisting of a worm gear and link were analyzed and reviewed. The slide hoist type was selected and applied because it had an advantage in relation to trunk space utilization. This study proposed a wheelchair transfer mechanism for a car to support a conventional wheelchair user's movements, and in order to conform to the structure of a domestic welfare car for the disabled.

Development of Hardware-linked Simulation Platform for Automation Mechanism Training (자동화 메커니즘 교육을 위한 하드웨어 연동형 시뮬레이션 플랫폼 개발)

  • Kim, Hyun-Hee;Park, Sung-Su;Lee, Kyung-Chang;Hwang, Yeong-Yeun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.34-42
    • /
    • 2015
  • As the industry environment is changing to automated systems, engineering education at university has changed with industrial development. Industry technology will be developed, and the industry environment will become more complicated. Therefore, the knowledge that undergraduates have to acquire in university will be extensive. Industries need a person with expertise to react quickly to rapidly changing technology. Therefore, universities need to endeavor to cultivate manpower in technical fields. This is difficult because the contents of engineering education must react quickly to rapidly changing industry technology. This paper proposes a hardware-linked simulation platform for engineering education on the well-used systems in industrial sites.