• Title/Summary/Keyword: Gear Strength

Search Result 248, Processing Time 0.021 seconds

Development of Airframe Structure for Disaster and Public Safety Multicopter UAV (재난치안용 멀티콥터 무인기 기체구조 개발)

  • Shin, Jeong Woo;Lee, Seunggyu;Noh, Jeong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.69-77
    • /
    • 2020
  • Airframe structure development of the 35 kg class 'Disaster and Public Safety Multicopter' UAV is described in this paper. To reduce the airframe weight, T-700 grade CFRP composite material was used, and the fuselage was designed with the semi-monocoque structure and plate installed with the control and communication devices designed in a sandwich structure. The specimen tests for the laminated plate and pipe were conducted to verify the strength and stiffness of the designed parts. The stacking sequence of composite materials was determined by the static strength and vibration analysis, and landing gear strut was designed by the nonlinear analysis with decent speed and ground clearance requirements. The static strength test was performed to evaluate the structural integrity and to verify the landing gear behavior.

Tooth modification of helical gears for minimization of vibration and noise

  • Chong, Tae-Hyong;Myong, Jae-Hyong;Kim, Ki-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.5-11
    • /
    • 2001
  • Vibration and noise of gears is doc to the transmission error and the vibration exciting force caused by the periodically alternating tooth stiffness. Transmission error is the rotation delay between driving and driven gear caused by manufacturing error, alignment error in assembly and so on. Tooth stiffness changes with the proceeding mesh of teeth. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification. end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the meshing analysis of gears. Formulated constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth bending strength, surface durability, and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. We also investigate the relation between the aspect ratio and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is expected to be practically useful to resolve the problem of vibration of helical gears.

  • PDF

Mechanical Properties of Surface Densified PM Gears (표면치밀화 기술에 의해 제조된 소결 기어의 기계적 특성)

  • Kim, Ki-Jung;Kim, Ki-Bum;Lee, Doo-Hwan;Park, Jong-Kwan;Jeong, Dong-Guk
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.189-195
    • /
    • 2012
  • A novel PM (powder metallurgy) steel for automotive power-train gear components was developed to reduce manufacturing cost, while meeting application requirements. The high-density PM steel was manufactured by mixing using special Cr-Mo atomized iron powders, high-pressure compaction, and sintering. Tensile strength, charpy impact, bending fatigue, and contact fatigue tests for the PM steel were carried out and compared to conventional forged steel. Pinion gears for auto-transmission were also manufactured by helical pressing, sintering, and surface densification process. In order to evaluate the durability of the PM parts, auto-transmission durability tests were performed using dynamometer tests. Results showed that the PM steel fulfilled the requirements for pinion gears indicating suitable tensile, bending fatigue, contact fatigue strengths and improved gear tooth profile. The PM gears also showed good performance during the transmission durability tests. As a result, the PM gears showed significant potential to replace the conventional forged steel gears manufactured by tooth machining (hobbing, shaving, and grinding) processes.

Finite Element Analysis for the Behavior of the Casing of a Pulverizer Mill Planetary Gear Reducer (석탄 분쇄기용 유성감속기 케이싱의 거동에 관한 유한요소해석)

  • Seo, Ji-Hwan;Kim, Seon-Jin;Jung, Min-Hwa;Kim, Byung-Tak
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.34-39
    • /
    • 2014
  • In this study, the structural analysis and the modal analysis are conducted to investigate the stress level, the deformation characteristics and the natural modes of the casing of a planetary gear reducer for a 800kW grade pulverizer mill. The casing is subjected to the load, 2800 kN, from the lump coals in the pulverizing process. Because of the symmetry, the half portion of the reducer casing is modeled for the stress analysis. But the full model is used to find out the eigenvalues and natural modes for the modal analysis. The contact conditions are applied between the thrust pad bearing and the adjacent contacting parts. The results shows that the casing structure has the sufficient strength and stiffness to support the load under consideration. ANSYS version 15 is employed to perform the numerical study.

A Study on the Improvement and Reliable Design in Sintered Spur Gear (소결치차의 성능향상과 신뢰성이 높은 소결치차 설계에 관한 연구)

  • 류성기
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.31-36
    • /
    • 1998
  • It is very important to have exact informations on the properties and characteristics of the sintered steel as a new material of machine elements. The bending fatigue tests are performed for sintered steel bend specimens and spur gears, which are notched by using a slicing blade. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester Consequently, the S-N curves are obtained and the fatigue strength. is compared with flaw depth. Accordingly, this study presents the fatigue strength of sintered spur gears, the critical notch depth of sintered steel and the effects of flaw depth on the bending fatigue strength. The enhancement of fatigue strength due to carburized treatment is clarified.

  • PDF

A Study on the Improvement and the Reliable Design in Sintered Spur Gear (소결치차의 성능향상과 신뢰성이 높은 소결치차설계에 관한 연구)

  • 류성기
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.34-40
    • /
    • 1998
  • It is very important to have exact informations on the properties and characteristics of the sintered steel as a new material of machine elements. The bending fatigue tests are performed for sintered steel bend specimens and spur gears, which are notched by using a slicing blade. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester. Consequently, the S-N curves are obtained and the fatigue strength is compared with flaw depth. Accordingly, this study presents the fatigue strength of sintered spur gears, the critical notch depth of sintered steel and the effects of flaw depth on the bending fatigue strength. The enhancement of fatigue strength due to carburized treatment is clarified.

  • PDF

Evaluation of Static/Dynamic Structural Strength for Automotive Round Recliner (자동차용 라운드 리클라이너 정적/동적 구조 강도 평가)

  • Lee Dongjae;Park Changsoo;Lee Kyoungteak;Kim Sangbum;Kim Heonyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.140-146
    • /
    • 2005
  • This study presents the development of a round recliner using the finite element method. That reduces the number of test repeating times and gives an information about stiffness. A simulation model of round recliner mounting seat module and tooth strength simulation are established using a PAM-CRASH and ABAQUS. With the optimization of gear profile, structural strength design of round recliner was achieved. The round recliner seat module simulation, structure strength simulation and a crash safety are requested by FMVSS test. Solution of round recliner optimum variable study and design problem are searched for round recliner stress, deformation and application. Also an examination of safety is made.

Analysis of the Structural Failure of Marine Propeller Blades

  • Lee, Chang-Sup;Kim, Yong-Jik;Kim, Gun-Do;Nho, In-Sik
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.3
    • /
    • pp.37-45
    • /
    • 2002
  • A series of detailed study was performed to identify the sources of the propeller blade failure and resolve the problem systematically, by use of the theoretical tools and by the direct measurement and observation in the full-scale sea trials. The selection of inexperienced propulsion control system with a reversible gear system is shown to cause the serious damage to the propeller blades in crash astern maneuver, when the rotational direction of the propeller is changed rapidly. Quasi-steady analysis for propeller blade strength using FEM code in bollard backing condition indicates that the safety factor should be order of 18∼20 to avoid the structural failure for the selected propeller geometry and reduction gear system.

Development of Durability Estimation and Design Systems of Worm Gears (웜기어의 강도평가 및 설계시스템 개발에 관한 연구)

  • 정태형;백재협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.207-216
    • /
    • 1997
  • We developed the durability estimation and design systems to minimize the volume, considering the durability, efficiency, and design requirements of worm gears. That is, we consider each kind of factors affecting on durability on the basis of AGMA Standard for the cylindrical and double-enveloping worm gears. We also estimate input power on the basis of wear and durability, bending strength and deflection of worm shaft, and we developed the durability estimation and design systems of power transmission worm gears introducing the optimal design method on the personal computer to be easily used in field. Also, we developed a method which converts the design variables obtained from the optimal design method to integer values(number of worm threads, number of worm threads, number of worm wheel teeth, etc.,) to be used in real design and production. The developed durability estimation and design method can be easily applied to the design of worm gears used as power transmission devices in machineries and is expected to be used for weight minimization of worm gear unit.

  • PDF

A Study on the Effect of the Shot Peening in SCM420H Planetary Gear (SCM420H 유성기어의 쇼트피닝 효과에 관한 연구)

  • Ahn, In-Hyo;Ahn, Min-Ju;Lyu, Sung-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • This study deals with the effect of the shot peening in SCM420H planetary gears. The hardness and roughness of the gear surface can be improved by shot blast and shot peening. there in, the shot peening techniques are welcomed especially as one of the physical surface improvement methods. The two treatments are used widely, because of the qualitative analysis of shot blast and shot peening has become possible and the surface treatment can be done with little costs compared with other surface improvement methods. Therefore, this study investigates the effects of shot blast and shot peening in surface shape. The fatigue strength test at a constant stress amplitude is performed by using an electrohydraulic serve-controlled pulsating tester. And fatigue test also explained characteristics of shot blast and shot peening of planetary gears.