• Title/Summary/Keyword: Ge-Se

Search Result 330, Processing Time 0.037 seconds

The Birefringence of the chalcogenide As-Ge-Se-S thin films by the electric field effects (전계효과에 의한 비정질 칼코게나이드 박막에서의 복굴절 특성)

  • Son, Chul-Ho;Jang, Sun-Joo;Yeo, Cheoi-Ho;Park, Jung-I1;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1727-1729
    • /
    • 2000
  • We has investigated the birefringence by the assisted electric field effect on $As_{40}Ge_{10}Se_{15}S_{35}$ thin films. Photoinduced birefringence has been studied in a chalcogenide material. We induced this thin films using linearly polarized He-Ne laser light(633nm) and detected polarized semiconductor laser light(780nm). To investigate the effect of electric field, various bias voltages applied. The result is shown that the birefringence has a higher value in +2V than others. We obtained the birefringence in the electric field effects by various voltages.

  • PDF

Selenide Glass Optical Fiber Doped with $Pr^{3+}$ for U-Band Optical Amplifier

  • Chung, Woon-Jin;Seo, Hong-Seok;Park, Bong-Je;Ahn, Joon-Tae;Choi, Yong-Gyu
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.411-417
    • /
    • 2005
  • $Pr^{3+}-doped$ selenide glass optical fiber, which guarantees single-mode propagation of above at least 1310 nm, has been successfully fabricated using a Ge-Ga-Sb-Se glass system. Thermal properties such as glass transition temperature and viscosity of the glasses have been analyzed to find optimum conditions for fiber drawing. Attenuation loss incorporating the effects of an electronic band gap transition, Rayleigh scattering, and multiphonon absorption has also been theoretically estimated for the Ge-Ga-Sb-Se fiber. A conventional double crucible technique has been applied to fabricate the selenide fiber. The background loss of the fiber was estimated to be approximately 0.64 dB/m at 1650 nm, which can be considered fairly good. When excited at approximately 1470 nm, $Pr^{3+}-doped$ selenide fiber resulted in amplified spontaneous emission and saturation behavior with increasing pump power in a U-band wavelength range of 1625 to 1675 nm.

  • PDF

The study of substrate dependence character for Ag photo-doping to chacogenide thin film by holographic lithograpy (홀로-리소그라피를 이용한 칼코게나이드 박막으로의 Ag 포토도핑의 기판 의존성)

  • Yeo, Jong-Bin;Yun, Sang-Don;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.189-190
    • /
    • 2007
  • 본 논문에서는 칼코게나이드 박막의 Ag 포토 도핑시 기판의 변화에 따른 Ag 이온의 도핑 특성을 예측하고자 하였다. 도핑 특성은 Ag 이온의 도핑으로 인한 굴절률 변화를 이용하여 진폭혈 회절격자 효율을 측정하여 확인하였다. 시료는 5N의 순도를 갖는 Ge, Se, Ag 물질을 준비하였고, 이중 GeSe를 조성의 비에 맞추어서 석영관에 진공 봉입후 용융 혼합하고 급냉하여 비정질 빌크를 제작한다. 만들어진 비정질 벌크와 Ag를 열 증착법을 이용하여 기판에 올리는 방법으로 샘플을 제작한다. 제작된 샘플에 레이저와 몇몇 광학 소자로 구성된 흩로-리소그라피 장치를 이용하여 격자구조로 442nm 의 빛을 조사 시킨다. 결론으로는 기판은 칼코게나이드 박막에의 Ag 도핑에 영향을 미친다는 것을 확인하였다.

  • PDF

Fabrication of 2-D photonic crystal with holographic lithography (홀로그램피 리소그래피 방법을 이용한 2차원 포토닉 크리스탈 제작)

  • Ju, Long-Yun;Nam, Ki-Hyun;Kim, Hyun-Koo;Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.162-163
    • /
    • 2007
  • In this paper, we fabrication of 2-D photonic crytal using holographic lithography. We used Ag doped chalcogenide AsGeSeS film and He-Ne (632.8nm) (P:P) Polarized laser beam. The thickness of Ag thin film was varied from 60nm and the thickness of chalcogenide thin film was varied from 2um. Frist, holographic lithography with 1-D photonic crystal on Ag/AsGeSeS film. And than revolved the sample $90^{\circ}$ to fabricate 2-D photonic crystal with holographic lithography.

  • PDF

Properties on Annealing of Chalcogenide Materials at Programmable Metallization Cell (Programmable Metallization Cell에서 칼코게나이드 물질의 열처리에 따른 특성)

  • Choi, Hyuk;Kim, Hyun-Gu;Nam, Ki-Hyun;Ju, Long-Yun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.164-164
    • /
    • 2007
  • Photodiffusion of silver into chalcogenide thin film is one of the most interesting effects that occurs in chalcogenide glass as it theatrically changes the properties of the initial material and forms a ternary. Programmable Metallization Cell(PMC) Randon Access Memory use for photodiffusion of mobile metal is based on the electrochemical growth and removal of nanoscale metallic pathway in thin film of solid electrolyte. This paper investigates the annling properties on Ag-doped $Ge_{25}Se_{75}$ thin film structure and describes the electrical characteristics of PMC-RAM. The composition of the intercalation products containing Ag is confirmed using X-ray diffraction which shows the formation of Ag-doped $Ge_{25}Se_{75}$.

  • PDF

Investigation of thermal Characteristics with Amorphous Chalcogenide Thin Film for Programmable Metallization Cell (PMC 응용을 위한 비정질 칼코게나이드 박막의 열적특성)

  • Ju, Long-Yun;Nam, Ki-Hyeon;Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1331-1332
    • /
    • 2007
  • In the present works, we investigate the thermal characteristics on Ag/$As_{2}S_{3}$ and Ag/$As_{40}Ge_{10}Se_{15}S_{35}$ amorphous chalcogenide thin film structure for PMC (Programmable Metallization Cell).As the results of resistance change with the temperature on Ag/$As_{40}Ge_{10}Se_{15}S_{35}$ amorphous chalcogenide thin film, the resistance was abruptly dropped from the initial resistance of 1.32 M ${\Omega}$ to the saturated value of 800 ${\Omega}$ at $203^{\circ}C$. On the other hand, the resistance increased to 1.3 $M{\Omega}$ at $219^{\circ}C$.

  • PDF

The photoinduced anisotrophy(PA) by Ag polarized-photodoping in amorphous chalcogenide thin films (Ag 편광 광도핑에 의한 칼코게나이드 박막의 광유기 이방성(PA))

  • 장선주;여철호;박정일;정홍배;이천용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.574-577
    • /
    • 1999
  • The chalcogenide glasses of thin films have superior property of the photoinduced anisotrophy(PA). In this study, we observed the phenomenon of Ag polarized photodoping using the irradiation with polarized He-Ne laser light, in the thin film of chalcogenide As/sub 40//Ge/sub 10//Se/sub 15//S/sub 35/ and the double-layer of Ag doped As/sub 40//Ge/sub 10//Se/sub 15//S/sub 35/. The Ag polarized photodoping result in reducing time of saturation anisotrophy and increasing sensitivity of linearly anisotrophy intensity, up to maximum 220%. In the thin films of chalcogenide, the Ag polarized photodoping will be show a capability of new method that suggested more improvement of photoinduced anisotrophy property

  • PDF

Electrical characteristic of differential ternary chalcogenide thin films (칼코게나이드 3원계 박막에서의 전기적 특성에 관한 연구)

  • Yang, Sung-Jun;Shin, Kyung;Lee, Jae-Min;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.377-380
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can controlled by electric pulses or pulsed laser beam; hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. GeSbTe(GST), AsSbTe(AST), SeSbTe(SST) used to phase change materials by appling electrical pulses. Thickness of ternary chalcogenide thin films have about 100nm. Upper and lower electrode were made of Al. It is compared with I-V characteristics after impress the variable pulses.

  • PDF

Cu-doped Ge-Se 박막의 스위칭 특성

  • Nam, Gi-Hyeon;Jeong, Won-Guk;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.157-157
    • /
    • 2010
  • Programmable Metallization Cell (PMC) is a memory device based on the electrolytical characteristic of chalcogenide materials. PMC components of Ge-Se doped with Ag ions were studied with help of the previous studies and copper was used for metallic ions taking into account of economy of components. In this study, we investigated the nature of thin films formed by photo doping of Cu ions into chalcogenide materials for use in solid electrolyte of programmable metallization cell devices. We were able to do more economical approach by using copper which play role of electrolyte ions. The results imply that a Cu-rich phase separates owing to the reaction of Cu with free atoms from chalcogenide materials.

  • PDF

Comparison of Adsorption Configurations between Phenylalanine and Tyrosine on Ge(100)

  • Im, Hui-Seon;Yang, Se-Na;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.216-216
    • /
    • 2011
  • We will investigate the bonding configurations of phenylalanine and tyrosine adsorbed on the Ge(100) surface using CLPES and DFT calculations. First, the C 1s, N 1s, and O 1s spectra obtained at 300 K revealed that both the amine and carboxyl groups of phenylalanine and tyrosine concurrently participated in adsorption on the Ge(100) surface without bond breaking using CLPES, depending on the extent of coverage. In the second place, we confirmed that the "O-H dissociated-N dative bonded structure" is the most stable structure implying kinetically favorable structure, and the "O-H dissociation bonded structure" is another stable structure manifesting thermodynamically advantageous structure using DFT calculations. This tendency turns up both phenylalanine and tyrosine, similarly. Furthermore, through the CLPES data and DFT calculation data, we discovered that the "O-H dissociated-N dative bonded structure" and the "O-H dissociation bonded structure" are preferred at 0.30 ML and 0.60 ML, respectively. Moreover, we found that the phenyl ring of phenylalanine is located in axial position to Ge(100) surface, but the phenyl ring of tyrosine is located in parallel to Ge(100) surface using DFT calculations.

  • PDF