• 제목/요약/키워드: Ge-Sb-Se

검색결과 50건 처리시간 0.051초

Sb-doping에 의한 Ge-Se-Te의 개선된 스위칭 특성 (Improved Switching Properties of Sb-doped Ge-Se-Te Material)

  • 정홍배;남기현;구상모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1260_1261
    • /
    • 2009
  • A detailed investigation and structure of tested samples are clearly presented. As a reference, $Ge_1Se_1Te_2$/Sb only sample was also investigated. We used compound of Ge-Se-Te material for phase-change cell. Actually, the performance properties have been improved surprisingly then conventional Ge-Sb-Te. However, crystallization time was as long as ever for amorphization time. We conducted this esperiment in order to solve that problem by doping-Sb.

  • PDF

비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se 광학계 및 결정화 특성 연구 (Chalcogenide Ge-Sb-Se Optical and Crystallization Characteristics for Basic a Planning Aspheric Lens)

  • 명태식;고준빈
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.598-603
    • /
    • 2016
  • The recent development of electro-optic devices and anticorrosion media has led to the necessity to investigate infrared optical systems with solid-solid interfaces of materials that often have the characteristic of amorphousness. One of the most promising classes of materials for those purposes seems to be the chalcogenide glasses. Chalcogenide glasses, based on the Ge-Sb-Se system, have drawn a great deal of attention because of their use in preparing optical lenses and transparent fibers in the range of 3~12 um. In this study, amorphous Ge-Sb-Se chalcogenide for application in an infrared optical product design and manufacture was prepared by a standard melt-quenching technique. The results of the structural, optical and surface roughness analysis of high purity Ge-Sb-Se chalcogenide glasses are reported after various annealing processes.

Sb-doped Ag/Ge-Se-Te 박막의 상변화 특성 연구 (A Study of Phase-change Properties of Sb-doped Ag/Ge-Se-Te thin films)

  • 남기현;정원국;박주현;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.347-347
    • /
    • 2010
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sb-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sb-doped Ge-Se-Te thin films.

  • PDF

Phase Change Characteristics of Sb-Based Phase Change Materials

  • Park, Sung-Jin;Kim, In-Soo;Kim, Sang-Kyun;Choi, Se-Young
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.61-64
    • /
    • 2008
  • Electrical optical switching and structural transformation of $Ge_{15}Sb_{85}$, $Sb_{65}Se_{35}$ and N2.0 sccm doped $Sb_{83}Si_{17}$ were studied to investigate the phase change characteristics for PRAM application. Sb-based materials were deposited by a RF magnetron co-sputtering system and the phase change characteristics were analyzed using an X-ray diffractometer (XRD), a static tester and a four-point probe. Doping Ge, Se or Si atoms reinforced the amorphous stability of the Sb-based materials, which affected the switching characteristics. The crystallization temperature of the Sb-based materials increased as the concentration of the Ge, Se or Si increased. The minimum time of $Ge_{15}Sb_{85}$, $Sb_{65}Se_{35}$ and N2.0 sccm doped $Sb_{83}Si_{17}$ for crystallization was 120, 50 and 90 ns at 12 mW, respectively. $Sb_{65}Se_{35}$ was crystallized at $170^{\circ}C$. In addition, the difference in the sheet resistances between amorphous and crystalline states was higher than $10^4{\Omega}/{\gamma}$.

Ge-Se의 스위칭 특성 향상을 위한 Sb-doping에 관한 연구 (Electrolyte Mechanizm Study of Amorphous Ge-Se Materials for Memory Application)

  • 남기현;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.69-69
    • /
    • 2009
  • In other to progress better crystallization transition and long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10 wt%, 20 wt% and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sh-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sh-doped Ge-Se-Te thin films.

  • PDF

비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se계 구조적, 광학적 특성 연구 (Structural and Optical Characteristics of ChalcogenideGe_Sb_Se for Basic Aspheric Lens Design)

  • 고준빈;명태식
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.133-137
    • /
    • 2014
  • The recent development of electro-optic devices and anticorrosion media has made it necessary investigate infrared optical systems with solid-solid interfaces of materials with amorphous characteristics. One of the most promising classes of materials for these purposes seems to be chalcogenide glasses, which are based on the Ge_Sb_Se system, have drawn much attention because of their use in preparing optical lenses and fibers that are transparent in the range of 3-12 um. In this study, a standard melt-quenching technique was used to prepare amorphous Ge_Sb_Sechalcogenideto be used in the design and manufacture of infrared optical products. The results of structural, optical, and surface roughness analyses of high purity Ge_Sb_Sechalcogenide glasses after various annealing processes reported.

Sb 광도핑에 의한 Ge1Se1Te2 박막의 상변화 메모리 특성 (The Phase-change Memory Characteristics of Ge1Se1Te2 Thin Films for Sb Photo Doping)

  • 남기현;김장한;정홍배
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.329-333
    • /
    • 2012
  • For phase transition method, good record sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, a retention time is very important part for phase-transition. In our past papers, we chose composition of $Ge_1Se_1Te_2$ material to use a Se factor which has good optical sensitivity than conventional Sb. Sb/Ge-Se-Te thin films are fabricated and irradiated with UV light source to investigate a reversible phase change by Sb-doped condition. Because of Sb atoms, the Sb inserted sample showed better performance than conventional one. We should note that this novel one showed another possibility for phase-change random access memory.

비정질 Ge1Se1Te2 과 Ge2Sb2Te5 칼코게나이드 박막의 상변화특성 (Phase Change Properties of Amorphous Ge1Se1Te2 and Ge2Sb2Te5 Chalcogenide Thin Films)

  • 정홍배;조원주;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제19권10호
    • /
    • pp.918-922
    • /
    • 2006
  • Chalcogenide Phase change memory has the high performance necessary for next-generation memory, because it is a nonvolatile memory with high programming speed, low programming voltage, high sensing margin, low power consumption and long cycle duration. To minimize the power consumption and the program voltage, the new composition material which shows the better phase-change properties than conventional $Ge_2Sb_2Te_5$ device has to be needed by accurate material engineering. In the present work, we investigate the basic thermal and the electrical properties due to phase-change compared with chalcogenide-based new composition $Ge_1Se_1Te_2$ material thin film and convetional $Ge_2Sb_2Te_5$ PRAM thin film. The fabricated new composition $Ge_1Se_1Te_2$ thin film exhibited a successful switching between an amorphous and a crystalline phase by applying a 950 ns -6.2 V set pulse and a 90 ns -8.2 V reset pulse. It is expected that the new composition $Ge_1Se_1Te_2$ material thin film device will be possible to applicable to overcome the Set/Reset problem for the nonvolatile memory device element of PRAM instead of conventional $Ge_2Sb_2Te_5$ device.

Ag 도핑된 Sbx(Ge-Se-Te)100-x 박막의 개선된 상변화 특성

  • 남기현;김장한;정홍배
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.181-182
    • /
    • 2011
  • Phase-change materials can be cycled by exposure to laser beam, and as a function of the pulse intensity and duration, the laser beam triggers the switching from crystalline to amorphous phase and back. In other to progress better crystallization transition and amorphization long phase-transformation data of phase-change memory (PRAM), we investigated about the effect of Sb doping and Ag ions percolating into Ge-Se-Te phase-change material. Doped Sb concentrations was determined each of 10, 20 and 30 wt%. As the Sb-doping concentration was increased, the resistivity decreased and the crystallization temperature increased. Ionization of Ag was progressed by DPSS laser (532 nm) for 1 hour. The resistivity was more decreased and the crystallization temperature was more increased in case of adding Ag layer under Sb-(Ge-Se-Te) thin film. At the every condition of thin films included Ag layer more stable states were indicated compare with just Sb-doped Ge-Se-Te thin films.

  • PDF

상변화 메모리 응용을 위한 Sb을 첨가한 $Ge_1Se_1Te_2$ 박막의 상변화 특성 (Phase-Change Properties of the Sb-doped $Ge_1Se_1Te_2$ thin films application for Phase-Change Random Access Memory)

  • 남기현;최혁;구용운;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.156-157
    • /
    • 2007
  • For tens of years many advantages of Phase-Change Random Access Memory(PRAM) were introduced. Although the performance improved gradually, there are some portions which must be improved. So, we studied new constitution of $Ge_1Se_1Te_2$ chalcogenide material to improve phase transition characteristic. Actually, the performance properties have been improved surprisingly. However, crystallization time was as long as ever for amorphization time. We conducted this experiment in order to solve that problem by doping-Sb.

  • PDF