• 제목/요약/키워드: Gaussian process model

검색결과 240건 처리시간 0.028초

Efficient CT Image Denoising Using Deformable Convolutional AutoEncoder Model

  • Eon Seung, Seong;Seong Hyun, Han;Ji Hye, Heo;Dong Hoon, Lim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권3호
    • /
    • pp.25-33
    • /
    • 2023
  • CT 영상의 획득 및 전송 등의 과정에서 발생하는 잡음은 영상의 질을 저하시키는 요소로 작용한다. 따라서 이를 해결하기 위한 잡음제거는 영상처리에서 중요한 전처리 과정이다. 본 논문에서는 딥러닝의 convolutional autoencoder (CAE) 모형에서 기존 컨볼루션 연산 대신 deformable 컨볼루션 연산을 적용한 deformable convolutional autoencoder (DeCAE) 모형을 이용하여 잡음을 제거하고자 한다. 여기서 deformable 컨볼루션 연산은 기존 컨볼루션 연산보다 유연한 영역에서 영상의 특징들을 추출할 수 있다. 제안된 DeCAE 모형은 기존 CAE 모형과 같은 인코더-디코더 구조로 되어있으나 효율적인 잡음제거를 위해 인코더는 deformable 컨볼루션 층으로 구성하고, 디코더는 기존 컨볼루션 층으로 구성하였다. 본 논문에서 제안된 DeCAE 모형의 성능 평가를 위해 다양한 잡음, 즉, 가우시안 잡음, 임펄스 잡음 그리고 포아송 잡음에 의해 훼손된 CT 영상을 대상으로 실험하였다. 성능 실험 결과, DeCAE 모형은 전통적인 필터 즉, Mean 필터, Median 필터와 이를 개선한 Bilateral 필터, NL-means 방법 뿐만 아니라 기존의 CAE 모형보다 정성적이고, 정량적인 척도 즉, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) 그리고 SSIM (Structural Similarity Index Measure) 면에서 우수한 결과를 보였다.

배깅 및 스태킹 기반 앙상블 기계학습법을 이용한 고성능 콘크리트 압축강도 예측모델 개발 (Development of a High-Performance Concrete Compressive-Strength Prediction Model Using an Ensemble Machine-Learning Method Based on Bagging and Stacking)

  • 곽윤지;고채연;곽신영;임승현
    • 한국전산구조공학회논문집
    • /
    • 제36권1호
    • /
    • pp.9-18
    • /
    • 2023
  • 고성능 콘크리트(HPC) 압축강도는 추가적인 시멘트질 재료의 사용으로 인해 예측하기 어렵고, 개선된 예측 모델의 개발이 필수적이다. 따라서, 본 연구의 목적은 배깅과 스태킹을 결합한 앙상블 기법을 사용하여 HPC 압축강도 예측 모델을 개발하는 것이다. 이 논문의 핵심적 기여는 기존 앙상블 기법인 배깅과 스태킹을 통합하여 새로운 앙상블 기법을 제시하고, 단일 기계학습 모델의 문제점을 해결하여 모델 예측 성능을 높이고자 한다. 단일 기계학습법으로 비선형 회귀분석, 서포트 벡터 머신, 인공신경망, 가우시안 프로세스 회귀를 사용하고, 앙상블 기법으로 배깅, 스태킹을 이용하였다. 결과적으로 본 연구에서 제안된 모델이 단일 기계학습 모델, 배깅 및 스태킹 모델보다 높은 정확도를 보였다. 이는 대표적인 4가지 성능 지표 비교를 통해 확인하였고, 제안된 방법의 유효성을 검증하였다.

가우시안 군집분석을 이용한 천리안 위성의 대기운동벡터 표적추적 알고리듬 개발 및 분석 (Development and Analysis of COMS AMV Target Tracking Algorithm using Gaussian Cluster Analysis)

  • 오유림;김재환;박형민;백강현
    • 대한원격탐사학회지
    • /
    • 제31권6호
    • /
    • pp.531-548
    • /
    • 2015
  • 위성영상을 이용하여 산출된 대기운동벡터(AMV)와 라디오존데 바람 관측 자료를 이용한 검증결과는 산출된 AMV가 지속적으로 관측 자료에 비해서 풍속이 약하게 나타나는 Slow Speed Bias(SSB)를 보여 주었다. 이러한 SSB는 표적추적, 표적선정, 그리고 고도할당 단계의 오차에 의해 야기될 수 있으며, 이 중 고도할당 단계의 오차는 SSB를 발생시키는 주된 요인으로 여겨진다. 그러나 최근 연구에서는 고도할당 단계의 개선만으로는 SSB 문제를 해결하는데 한계가 있음을 밝혔다. 그러므로 본 연구에서는 새로운 표적추적 알고리듬을 개발하여 SSB를 감소시킴으로서 기상청 현업 AMV 알고리듬의 성능을 개선하고자 하였다. 표적추적 단계의 오차는 표적 내에 다양한 시 공간 규모의 바람이 포함되어 벡터가 과도하게 평균된 움직임으로 계산되거나, 구름이 추적 시간동안 형태를 유지하지 못하고 변형되는 경우에 발생한다. 이러한 문제를 해결하기 위해 개발된 표적추적 알고리듬에서는 가우시안 군집분석(GMM)을 이용하여 변형이 적고 추적에 용이한 저온 군집을 표적으로 재선정하고, 이미지를 변형시켜 군집의 움직임을 보다 쉽게 추적할 수 있게 하였다. 또한 표적을 추적하기 위한 방법으로 거리제곱합 방법을 사용하였다. 개발된 알고리듬과 기존 COMS 알고리듬을 천리안 위성의 적외채널 영상에 적용하여 AMV를 산출하였으며, 이를 라디오존데 관측 자료와 비교 검증해 보았다. 제안된 알고리듬으로 산출된 AMV는 기존 알고리듬으로 산출된 AMV보다 평균 풍속이 $2.7ms^{-1}$증가함에 따라 SSB가 평균 29%까지 감소하는 개선된 결과를 보여주었다. 그러나 개발된 알고리듬으로 산출된 AMV는 중 하층의 정확도가 감소하였고, 기존 알고리듬에 비해 산출되는 AMV 벡터수가 약 40%까지 감소함을 보였다. 이에 따라 중 하층의 정확도 개선과 기존의 알고리듬과 비교하여 산출되는 벡터 개수가 감소하는 문제를 보완하기 위한 연구가 필요할 것으로 판단된다.

Monk's Problem에 관한 가우시안 RBF 모델의 성능 고찰 (A Performance Study of Gaussian Radial Basis Function Model for the Monk's Problems)

  • 신미영;박준구
    • 전자공학회논문지CI
    • /
    • 제43권6호
    • /
    • pp.34-42
    • /
    • 2006
  • 데이터 마이닝(data mining)이란 대량의 데이터에 내재되어 있는 숨겨진 패턴을 찾아내기 위한 분석 기술로서 지금까지 많은 연구가 진행되어 왔지만, 현재의 데이터 마이닝 연구는 ad-hoc 문제와 같은 해결되어야 할 중요한 이슈들이 있다. 즉, 개별적 문제에 대해 설계된 마이닝 기법이 주로 사용되는 까닭에 여러 문제에 통합적으로 적용될 수 있는 시스템적 마이닝 기법에 관한 연구가 요구되고 있다. 본 논문에서는 이러한 핵심 데이터 마이닝 태스크 중의 하나인 분류 모델링 방법으로 방사형 기저 함수(radial basis function, RBF) 모델의 성능을 고찰하고 그 유용성(usefulness)을 살펴보고자 한다. 특히, 대표적인 마이닝 관련 벤치마킹 데이터인 Monk's problem 분석을 위해 RC(Representation Capacity) 기반 알고리즘을 사용하여 RBF 모델을 구축하고 분류 성능을 기존의 연구 결과와 비교 고찰한다. 그리하여 RBF 모델의 분류 성능 면에서의 우수성뿐만 아니라 모델링 과정을 체계적인 방식으로 적절히 제어할 수 있음을 보여주고, 이를 통해 현재의 ad-hoc 방식의 문제를 어느 정도 해결할 수 있음을 보여준다.

지구물리 자료의 고속 베이지안 역산 (Fast Bayesian Inversion of Geophysical Data)

  • 오석훈;권병두;남재철;이덕기
    • 지구물리
    • /
    • 제3권3호
    • /
    • pp.161-174
    • /
    • 2000
  • 베이지안 역산(Bayesian inversion)은 불충분한 자료를 가지고 지하구조를 추정해야 하는 지구물리자료의 해석에 있어서 안정적이고 신뢰를 줄 수 있는 방법 중의 하나이다. 관측 자료가 측정 과정부터 불확실성을 함유하고 있으며, 역산에 이용되는 이론 자료 또한 모델의 매개변수화에 따른 각종 불확실성을 포함하고 있다. 따라서 지구물리 자료의 역산은 확률적으로 접근하는 것이 가장 바람직하며 베이지안 역산은 이에 대한 처리뿐만 아니라, 추정에 대한 신뢰도와 불확실성에 대한 이론적 근거를 제공한다. 그러나 대부분의 베이지안 역산이 고차원의 적분을 필요로 하므로 몬테 카를로 방법과 같은 대규모의 계산이 요구되는 방법에 의해 사후 확률분포가 구해지는 경우가 많다. 이는 특히 지구물리 자료와 같이 고도의 비선형 자료에 대하여 매우 적합한 접근 방법이기는 하지만, 점차 현장화, 고속화되어가는 자료의 해석 경향에 맞추어 간략하게 사후 확률분포를 근사한 수 있는 기법의 연구 또한 필요하다. 따라서 이 연구에서는 관측자료와 사전 확률분포가 정규분포에 의해 근사 될 수 있는 지구물리자료에 대한 베이지안 역산에 대해 논의 하고자 한다. 사전 확률분포의 작성을 위해 지구통계학적 기법이 이용되었으며, 관측자료의 통계적 불화실성을 추정하기 위해 교차 검사(cross-validation) 방법을 이용하여 공분산(covariance)을 유도하고 그것에 의한 우도 함수(likelihood function)를 작성하였다. 베이지안 해석을 위해 두 확률분포를 곱하여 근사적인 사후 확률분포를 얻을 수 있었으며, 이에 대해 최적화(optimization) 기법을 이용하여 최대 사후 확률(Maximum a Posterior)을 따르는 지하 구조를 얻을 수 있었다. 또한 사후 확률 분포의 공분산 항을 이용하여 지하 비저항 구조를 시뮬레이션 하여 불확실성분석을 수행하였다.

  • PDF

영상 분할을 이용한 객체 기반 집적영상 깊이 추출 (Object-Based Integral Imaging Depth Extraction Using Segmentation)

  • 강진모;정재현;이병호;박재형
    • 한국광학회지
    • /
    • 제20권2호
    • /
    • pp.94-101
    • /
    • 2009
  • 본 논문에서는 집적영상에서 깊이 추출을 할 때 영상 분할 방법을 이용하여 각각의 물체에 대해 삼각형 메쉬(mesh) 모델을 구성하는 방법을 제안하였다. 집적영상에서 렌즈 어레이와 카메라를 이용하여 실제 물체를 픽업하면 요소영상(Elemental image) 집합을 얻을 수 있다. 요소영상 집합은 3차원 물체의 정보를 가지고 있으므로 대응점 분석을 통해 깊이 추출을 할 수 있다. 우선, 각 요소영상 중심점의 대응점 분석을 통해 시차를 구하고 이를 이용하여 깊이를 구한다. 요소영상의 중심점에 해당하는 물체의 X, Y 공간좌표는 각 점들이 사각형 격자 형태를 이룬다. 이 격자 형태의 점들 중에서 가까운 점 3개를 연결하여 삼각형 메쉬를 만들면 물체의 삼각형 메쉬 모델을 구할 수 있다. 이 때 각 물체에 대해 삼각형 메쉬 모델을 구하기 위해서 요소영상의 중심점들로 구성된 가운데 방향별 영상을 영상 분할하고 각각의 분할된 영역에 대해서만 삼각형 메쉬 모델을 구성하였다. 영상 분할 방법은 normalized cut 방법을 이용하였다. 제안된 방법의 검증을 위해 실제 물체를 픽업하고 각 물체의 삼각형 메쉬 모델을 구성하였다.

Swash대역에서의 해빈표사 부유거동에 관한 연구 (Suspension of Sediment over Swash Zone)

  • 조용준;김권수;유하상
    • 대한토목학회논문집
    • /
    • 제28권1B호
    • /
    • pp.95-109
    • /
    • 2008
  • 본 연구에서는 LDS 난류응력 모형, Van Rijn의 pick up 함수를 활용하여 일정 경사부에서의 파랑의 이행과 천수, 연이은 쇄파현상, plunging breaker에 후행하는 해저질의 역동적인 부유와 down rush와 후행 파랑에 의한 표사의 재분배를 수치모의 하였다. 이 과정에서 해저질과 소통하는 저면 유체력에 대한 quadratic law를 중심으로 한 기존의 연구 성과들은 정상상태에 기초하여 급속히 가속되고 감속되는 swash 대역의 수리특성을 반영할 수 없다는 결론에 도달하고 이러한 인식에 기초하여 새로운 산출방법이 제시되었다. 새로운 산출방법을 토대로 수치모의하여 비선형 천수과정의 일반적인 특징, 동조 비동조 고차 조화성분으로 전이된 파랑에너지로 인해 상당히 예리하고 왜도된 파형, 파형의 마루로부터 시작되는 물입자 자유낙하, 착수로 인한 커다란 물보라의 형성, 물보라 형성층의 해변으로의 이행, wave finger (Narayanaswamy와 Dalrymple, 2002), swash 대역에서 진행되는 부유사 순환과정, swash 대역에서 처오름으로 인해 부유된 부유사 무리의 off shore 방향으로의 순 이동 등이 비교적 정확히 재현되는 등 상당히 고무적인 결과를 얻을 수 있었다. 이러한 결과는 기존의 Euler 좌표계에서 정의되는 파랑모형과 이동경계 기법의 한계를 뛰어 넘는 것으로 향후 보다 정확한 침식해석이 가능 할 것으로 판단된다.

국부 통계치를 활용한 서양금석문 영상향상 (Image Enhancement for Western Epigraphy Using Local Statistics)

  • 황재호
    • 대한전자공학회논문지SP
    • /
    • 제44권3호
    • /
    • pp.80-87
    • /
    • 2007
  • 국부 통계치에 근거한 서양금석문 영상향상 기법을 고안한다. 영상데이터는 배경과 정보의 두 영역으로 구분한다. 통계 및 함수적 분석을 통해 서양금석문 영상 대부분이 가우스 회색도분포임을 규명하고 분포 및 영역특성을 고려한 모델을 구현한다. 모델을 대상으로 국부정규화처리 알고리즘을 수식화하고 파라미터를 추출하며 이동창에서의 기능과 특성을 논의한다. 파라미터와 이동창의 크기를 조정하여 화소 회색도의 공간 분포를 변형하고 영역을 선별한다. 이 때 국부통계치는 알고리즘을 실현하는 유용한 근거로 활용된다. 알고리즘 적용에 의해 영역의 잡음과 불규칙한 분포 상태가 평활되는 동시에 영역 사이의 회색도 격차를 증대시켜 영상을 향상한다. 실험결과는 제안된 방식이 기존의 영상향상 기법보다 우수한 효과가 있음을 보여준다.

차량용 항법장치에서의 관심지 인식을 위한 다단계 음성 처리 시스템 (Multi-layer Speech Processing System for Point-Of-Interest Recognition in the Car Navigation System)

  • 방기덕;강철호
    • 한국멀티미디어학회논문지
    • /
    • 제12권1호
    • /
    • pp.16-25
    • /
    • 2009
  • 안전성을 최우선시 해야 하는 자동차 환경에서 관심지 (POI, Point-Of-Interest) 도메인을 대상으로 하는 대용량 고려 단어 인식 시스템은 최적의 인간-기계 상호접속(HMI, Human-Machine Interface) 기술을 요구하고 있다. 하지만, 매우 제한된 연산처리 능력과 메모리를 가지는 텔레매틱스 단말기에서 10만 단어 이상을 일반적인 음성인식 방식으로 처리하기는 불가능하다. 따라서 본 논문에서는 텔레매틱스 단말기의 관심지 인식을 위하여 다단계 구조의 대용량 고립단어 인식 시스템을 제안하였다. 이 관심지 인식 시스템의 성능향상을 위해 음소별 가우시안 혼합모델(GMM, Gaussian Mixture Model)을 사용한 음소 인식기와 음소별 거리 행렬(PDM, Phoneme-distance Matric) 레빈쉬타인(Levenshtein) 거리를 제안하였다. 제안한 방법은 낮은 처리속도와 적은 양의 메모리를 가지는 텔레매틱스 단말기에서도 대용량 고립단어에 대하여 우수한 인식 성능을 나타내었다. 본 논문에서 제안한 다단계 인식 시스템을 사용하였을 경우 실내에서 최대 94.8%, 자동차환경에서는 최대 92.4%의 인식 성능을 얻을 수 있었다.

  • PDF

뜰개 이동 예측을 위한 신경망 및 통계 기반 기계학습 기법의 성능 비교 (Performance Comparison of Machine Learning Based on Neural Networks and Statistical Methods for Prediction of Drifter Movement)

  • 이찬재;김경도;김용혁
    • 한국융합학회논문지
    • /
    • 제8권10호
    • /
    • pp.45-52
    • /
    • 2017
  • 뜰개는 해양에서 해수의 특성 및 흐름을 관측하기 위한 장비로서, 해수의 흐름 관측을 이용해 유출유 확산 예측을 위해 사용될 수 있다. 본 논문에서는 관측기관에서 사용하는 뜰개가 특정 시간 간격으로 관측한 바람 및 해수의 특성과 이동경로를 기계학습 기법들을 이용하여 학습시키고 예측하는 모델을 제안한다. 서포트벡터 회귀, 방사기저함수 네트워크, 가우시안 프로세스, 다층 퍼셉트론, 순환신경망을 이용하여 뜰개의 이동경로 예측 방법을 제시한다. 기존 MOHID 수치모델과 비교하여 각 기법별로 4 개의 사례중 3 개에서 성능이 개선되었으며, 가장 좋은 개선율을 보인 기법은 LSTM으로 평균 47.59% 개선되었다. 추후 연구에서는 배깅과 부스팅을 이용하여 가중치를 부여하여 정확도를 개선할 예정이다.